

Probing radiative electroweak symmetry breaking with colliders and gravitational waves

Ke-Pan Xie (谢柯盼)

Beihang University

2024.7.13 @ 第17届粒子物理、核物理和宇宙学交叉学科前沿问题研讨会

with Wei Liu, arXiv: 2407.xxxxx (maybe next week)

Mystery of electroweak symmetry breaking

Efforts to solve the mystery

Supersymmetry

Cancellation guaranteed by symmetry $\delta\mu_{\rm B}^2-\delta\mu_{\rm F}^2=0$

Prediction: *sparticles*

Composite Higgs

The Higgs boson is a pNGB, like π mesons in the QCD Fundamental strong dynamics UV scale

SELECTRON

Prediction: *composite resonances*

Radiative symmetry breaking [This talk]

Copyright: STFC/Ben Gilliland

Radiative symmetry breaking

Originates from Coleman & Weinberg^[Phys.Rev.D 7 (1973) 1888-1910] Example: massless scalar QED

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + D_{\mu}S^{\dagger}D^{\mu}S - \lambda|S|^{4}$$
$$S = (\phi + i\eta)/\sqrt{2} \text{ and } D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

Radiative symmetry breaking

Originates from Coleman & Weinberg^[Phys.Rev.D 7 (1973) 1888-1910] Example: massless scalar QED

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + D_{\mu} S^{\dagger} D^{\mu} S - \lambda |S|^{4}$$
$$S = (\phi + i\eta)/\sqrt{2} \text{ and } D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

One-loop level

$$V_1(\phi) = \frac{3e^4}{32\pi^2} \phi^4 \left(\log \frac{\phi}{w} - \frac{1}{4} \right)$$

Spontaneous symmetry breaking!

$$m_{\phi} = \sqrt{6e^2 w} / 4\pi$$
 and $m_A = ew$

Radiative symmetry breaking

Originates from Coleman & Weinberg^[Phys.Rev.D 7 (1973) 1888-1910] Example: massless scalar QED

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + D_{\mu}S^{\dagger}D^{\mu}S - \lambda|S|^{4}$$
$$S = (\phi + i\eta)/\sqrt{2} \text{ and } D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

One-loop level

$$V_1(\phi) = \frac{3e^4}{32\pi^2} \phi^4 \left(\log \frac{\phi}{w} - \frac{1}{4} \right)$$

Spontaneous symmetry breaking!

$$m_{\phi} = \sqrt{6e^2 w} / 4\pi$$
 and $m_A = ew$

Other perspectives

- 1. Scale anomaly, or conformal anomaly, or trace anomaly
- 2. Dimensional transmutation from λ to w

Application to the EWSB

Get rid of the quadratic divergence

[Bardeen, FERMILAB-CONF-95-391-T; Meissner et al, PLB 660 (2008) 260-266]

Can it be **directly** applied to the SM Higgs? No!

- 1. EW *W* & *Z* induces: $\frac{m_h^2}{m_W^2} \sim \frac{g_W^2}{16\pi^2} \Rightarrow m_h \lesssim 10 \text{ GeV}$
- 2. Including $t: V_1(h) \sim B_h^2 h^4 \log h$, with $B_h \sim (9g_W^2 48y_t^2) < 0$

Application to the EWSB

Get rid of the quadratic divergence

[Bardeen, FERMILAB-CONF-95-391-T; Meissner et al, PLB 660 (2008) 260-266]

Can it be **directly** applied to the SM Higgs? No!

- 1. EW *W* & *Z* induces: $\frac{m_h^2}{m_W^2} \sim \frac{g_W^2}{16\pi^2} \Rightarrow m_h \lesssim 10 \text{ GeV}$
- 2. Including $t: V_1(h) \sim B_h h^4 \log h$, with $B_h \sim (9g_W^2 48y_t^2) < 0$

A next-to-minimal approach^[Hempfling, Phys.Lett.B 379 (1996) 153-158]

The framework of a realistic model

Tree-level $V_0(H, S) = \lambda_h |H|^4 + \lambda_s |S|^4 - \lambda' |S|^2 |H|^2$ Only dimensionless parameters

The framework of a realistic model

Tree-level $V_0(H, S) = \lambda_h |H|^4 + \lambda_s |S|^4 - \lambda' |S|^2 |H|^2$ Only dimensionless parameters

Loop-level, unitary gauge

$$V_{1}(h,\phi) = \underbrace{\frac{3g_{X}^{4}}{32\pi^{2}}\phi^{4}\left(\log\frac{\phi}{w_{0}} - \frac{1}{4}\right)}_{\text{Radiative symmetry breaking}} - \frac{\lambda'}{4}h^{2}\phi^{2} + \frac{\lambda_{h}}{4}h^{4}$$

$$(\phi) \approx w_{0}$$

$$(\phi) \approx w_{0}$$

$$V_{h}(h) \approx -\frac{\lambda'w_{0}^{2}}{4}h^{2} + \frac{\lambda_{h}}{4}h^{4}$$

The framework of a realistic model

Tree-level $V_0(H, S) = \lambda_h |H|^4 + \lambda_s |S|^4 - \lambda' |S|^2 |H|^2$ Only dimensionless parameters

Loop-level, unitary gauge

Taking
$$\lambda' \approx \frac{m_h^2}{w_0^2} \approx 1.6 \times 10^{-4} \times \left(\frac{10^4 \text{ GeV}}{w_0}\right)^2$$
 and $\lambda_h \approx \frac{m_h^2}{2v_{\text{ew}}^2} \approx 0.13$ --Correct Higgs potential & EWSB get!

The prediction of this mechanism? [This talk]

The distinctive feature

A **light** scalar compared to the NP scale λ' portal -- h- ϕ **mixing** Vacuum structure $(h, \phi) = (v_{ew}, w)$. Only two free parameters!

The distinctive feature

A **light** scalar compared to the NP scale λ' portal -- h- ϕ **mixing** Vacuum structure $(h, \phi) = (v_{ew}, w)$. Only two free parameters! Full expressions in our paper

Searching for a singlet scalar mixing with the Higgs boson!

Ke-Pan Xie (谢柯盼), Beihang University

The particle experiment search

Landscape:

- $m_{\phi} \lesssim 4$ GeV: mesons, gg
- 4 GeV $\leq m_{\phi} \leq 10$ GeV: $\phi \rightarrow \tau^+ \tau^-$
- $10 \text{ GeV} \lesssim m_{\phi} \lesssim 160 \text{ GeV}: \phi \rightarrow b\overline{b}$
- 160 GeV $\lesssim m_{\phi} \lesssim$ 250 GeV: $\phi \rightarrow VV$, with $V = W^{\pm}$, Z
- $m_{\phi} \gtrsim 250 \text{ GeV}: \phi \rightarrow VV$, *hh*, or even $t\bar{t}$

 $\phi \rightarrow hh$

Simulations at a 10 TeV muon collider

Vector boson fusion (VBF)

Cross section $\sigma = \sin^2 \theta \times \sigma_h(m_\phi) \longleftarrow$ SM-like calculation

The $\phi \rightarrow b \overline{b}$ channel

Parton-level simulation = FeynRules model file + MadGraph5 event generator + 10% jet energy smearing

Backgrounds

- VBF $\mu^+\mu^- \rightarrow jj$
- $\mu^+\mu^- \rightarrow Z/\gamma \rightarrow jj$ easily removed using m(jj)

Cuts:

- Two jets with $p_T > 30 \text{ GeV}$ and $|\eta| < 2.43$
- $m_{\rm recoil} > 200 \, {\rm GeV}$
- $|m(jj) m_{\phi}| < 0.2 \times m_{\phi}$

Assuming a 70% *b*-tagging rate yields similar sensitivity Similar treatment for $\phi \rightarrow \tau^+ \tau^-$ with 90% τ -tagging rate

The $\phi \rightarrow VV$ channel

Backgrounds

- VBF $\mu^+\mu^- \rightarrow VV \rightarrow jjjj$
- $\mu^+\mu^- \rightarrow jjjj$ easily removed using m(jjjj)
- VBF $\mu^+\mu^- \rightarrow jjjj$ via QCD splitting negligible after m(jj) selection

Cuts:

Four jets with $p_T > 30 \text{ GeV}$ and $|\eta| < 2.43$

signal jj

signal 4i

- $m_{\rm recoil} > 200 \, {\rm GeV}$
- Pairing jets to have V candidates with $|m(jj) m_V| < 15 \text{ GeV}$

0.500

0.100

0.050

 $|m(jjjj) - m_{\phi}| < 30 \text{ GeV}$ •

Similar treatment for $\phi \rightarrow hh \rightarrow b\overline{b}b\overline{b}$ 70% *b*-tagging rate

500

Another distinctive feature

A new scalar can be the consequence of any new physics model!

More evidences? The special shape of potential

Ke-Pan Xie (谢柯盼), Beihang University

First-order phase transitions

First-order phase transitions

Ke-Pan Xie (谢柯盼), Beihang University

Thermal history: normal pattern

$$V_{T}(h,\phi,T) \approx \frac{3g_{X}^{4}}{32\pi^{2}}\phi^{4}\left(\log\frac{\phi}{w} - \frac{1}{4}\right) + \frac{g_{X}^{2}T^{2}}{8}\phi^{2} - \frac{\lambda'}{4}h^{2}\phi^{2} + \frac{\lambda_{h}}{4}h^{4} + \frac{c_{h}T^{2}}{2}h^{2}$$

$$\uparrow Dark A' \qquad SM \text{ particle}$$

1. At T_p , the $U(1)_X$ FOPT occurs via $\phi: 0 \to w_*$

2. Then
$$V_T(h, \phi, T) \rightarrow V_T(h) \approx \frac{c_h T^2 - m_h^2/2}{2} h^2 + \frac{\lambda_h}{4} h^4$$

Define $T_{\text{ew}} = \frac{m_h}{\sqrt{2c_h}} \sim 140 \text{ GeV}$

Thermal history: normal pattern

$$V_{T}(h,\phi,T) \approx \frac{3g_{X}^{4}}{32\pi^{2}}\phi^{4}\left(\log\frac{\phi}{w} - \frac{1}{4}\right) + \frac{g_{X}^{2}T^{2}}{8}\phi^{2} - \frac{\lambda'}{4}h^{2}\phi^{2} + \frac{\lambda_{h}}{4}h^{4} + \frac{c_{h}T^{2}}{2}h^{2}$$

$$\uparrow Dark A' \qquad SM \text{ particle}$$

1. At T_p , the $U(1)_X$ FOPT occurs via $\phi: 0 \to w_*$

2. Then
$$V_T(h, \phi, T) \rightarrow V_T(h) \approx \frac{c_h T^2 - m_h/2}{2} h^2 + \frac{\lambda_h}{4} h^4$$

Define $T_{\text{ew}} = \frac{m_h}{\sqrt{2c_h}} \sim 140 \text{ GeV}$

• If $T_p > T_{ew}$

• If $T_p < T_{ew}$

Thermal history: inverted pattern

1. Even at $T_{\text{QCD}} \approx 85 \text{ MeV}$, $U(1)_X$ & EW still not transition 2. QCD FOPT occurs at T_{QCD} with 6 massless quarks 3. Top Yukawa $-\frac{y_t}{\sqrt{2}} \langle \bar{t}t \rangle h$ induces $\langle h \rangle = v_{\text{QCD}} \approx 100 \text{ MeV}$ 4. $V_T(h, \phi, T) \rightarrow V_T(\phi) \approx \frac{3g_X^4}{32\pi^2} \phi^4 \left(\log \frac{\phi}{w} - \frac{1}{4}\right) + \frac{g_X^2 T^2 - 2\lambda' v_{\text{QCD}}^2}{8} \phi^2$ Define $T_{\text{roll}} = \sqrt{2\lambda'} \frac{v_{\text{QCD}}}{g_X} \approx 1.8 \text{ MeV} \times \left(\frac{10^4 \text{ GeV}}{g_X w}\right)$

Witten, NPB 177, 477 (1981); Iso et al, PRL 119 (2017) 14, 141301

Thermal history: inverted pattern

1. Even at $T_{\text{QCD}} \approx 85 \text{ MeV}$, $U(1)_X$ & EW still not transition 2. QCD FOPT occurs at T_{QCD} with 6 massless quarks 3. Top Yukawa $-\frac{y_t}{\sqrt{2}} \langle \bar{t}t \rangle h$ induces $\langle h \rangle = v_{\text{QCD}} \approx 100 \text{ MeV}$ 4. $V_T(h, \phi, T) \rightarrow V_T(\phi) \approx \frac{3g_X^4}{32\pi^2} \phi^4 \left(\log \frac{\phi}{w} - \frac{1}{4}\right) + \frac{g_X^2 T^2 - 2\lambda' v_{\text{QCD}}^2}{8} \phi^2$ Define $T_{\text{roll}} = \sqrt{2\lambda'} \frac{v_{\text{QCD}}}{g_X} \approx 1.8 \text{ MeV} \times \left(\frac{10^4 \text{ GeV}}{g_X w}\right)$

Witten, NPB 177, 477 (1981); Iso et al, PRL 119 (2017) 14, 141301

• If $T_{\rm QCD} > T_{\rm roll}$

• If $T_{\rm QCD} < T_{\rm roll}$

Joint QCD-EW- $U(1)_X$ FOPT

The consequence of FOPTs

Stochastic gravitational waves^[Caprini et al, JCAP 1604 (2016) 001]

- 1. Bubble collision
- 2. Sound waves in plasma

$$f_{\text{peak}} \sim 10^{-3} \text{ Hz} \times \left(\frac{1}{\nu_w}\right) \left(\frac{\beta/H_*}{10}\right) \left(\frac{T_*}{\text{TeV}}\right)$$

3. Turbulence in plasma

Two important parameters:

- *α* -- latent heat over radiation energy
- β/H_* -- inverse ratio of FOPT duration to Hubble time

Our calculations

Resolve the FOPT dynamics using full one-loop finite temperature field theory, optimize calculation at extremely low temperatures

One example:

m_{ϕ}	θ	g_X	W	T_p	α	β/H_*	T _{rh}	T_{Λ}
0.79 GeV	10 ⁻⁶	1.3×10^{-4}	2.5×10 ⁸ GeV	0.56 MeV	5.2×10 ²⁷	4.9×10 ⁶	1.7 GeV	4.7×10 ³ GeV

Extremely strong! "Thermal inflation" below T_{Λ} But very *prompt*: a **strong** but **fast** FOPT

Combined results (1)

The heavy singlet scenario $m_{\phi} > m_h$

- Collider: HL-LHC $pp \rightarrow \phi \rightarrow ZZ$; 10 TeV $\mu^+\mu^- \rightarrow \phi \rightarrow b\overline{b}$, VV, hh
- GWs: [LISA, TianQin, Taiji] and [BBO, DECIGO]

FOPT pattern:

- $U(1)_X$ FOPT + EW crossover or $U(1)_X$ -EW FOPT
- $U(1)_X$ transition after the QCD-EW transition

Combined results (1)

The heavy singlet scenario $m_{\phi} > m_h$

- Collider: HL-LHC $pp \to \phi \to ZZ$; 10 TeV $\mu^+\mu^- \to \phi \to b\overline{b}$, VV, hh
- GWs: [LISA, TianQin, Taiji] and [BBO, DECIGO]

Combined results (2)

The light singlet scenario $m_{\phi} < m_h$

- Collider: LLP searches; 10 TeV $\mu^+\mu^- \rightarrow \phi \rightarrow \tau^+\tau^-, b\overline{b}$
- GWs: [BBO, DECIGO]

Combined results (2)

The light singlet scenario $m_{\phi} < m_h$

- Collider: LLP searches; 10 TeV $\mu^+\mu^- \rightarrow \phi \rightarrow \tau^+\tau^-, b\overline{b}$
- GWs: [BBO, DECIGO]

Closing remarks

Radiative symmetry breaking can be efficiently probed by combining the particle and GWs

- A relatively light singlet scalar $m_{\phi} \ll w$
- A supercooled FOPT $T_p \ll w$

Closing remarks

Radiative symmetry breaking can be efficiently probed by combining the particle and GWs

Distinctive features

- A relatively light singlet scalar $m_{\phi} \ll w$
- A supercooled FOPT $T_p \ll w$

Future research

Exotic thermal history for dark matter, [1805.01473, 2304.00908] primordial black holes, [2311.13640, 2312.04628, 2401.09411] and baryogenesis.^[2206.04691, 2305.10759] Thank you!