Searching the QCD critical point with the net-proton multiplicity fluctuations

Shanjin Wu(吴善进)

Lanzhou University

第十七届粒子物理、核物理和宇宙学交叉学科前沿问题研讨会 2024年7月13日@贵阳

Exploring QCD phase diagram in Heavy-Ion Collisions

Phases of the QCD matter

Hadron

Confinement Chiral symmetry breaking

Quark gluon plasma

Deconfinement Chiral symmetry restoration

QCD phase diagram

- small μ_B and $T \sim 155$ MeV(Lattice QCD):
 - Crossover (2nd order phase transition)
- large μ_B (Effective models: DSE, fRG)
 - 1st order phase transition
- \rightarrow Critical point
- Lattice QCD: sign problem at large μ_B
- Effective models: parameters dependent
- \rightarrow Heavy-ion collisions :
 - tuning $\sqrt{s_{NN}}$, mapping $T \mu$ phase diagram: RHIC(BES), NICA, FAIR, J_PARC, HIAF....

Stages of Heavy-Ion collisions

Experimental and theoretical studies shows the QGP has been created.

Facilities of relativistic heavy-ion collisions

First collisions in 2000

- Diameter 1.2 km
- pp, dAu, CuCu, AuAu, UU, OO, ...
- √sNN ~ 0.007 0.2 TeV
- 99.995% speead of light

First collisions in 2010

- Diameter 8.6 km
- pp, PbPb, pPb, XeXe
- √sNN ~ **5 8 TeV**
- 99.9999991% speead of light

"Standard model" in Heavy-ion collisions: Hydrodynamics

Why heavy-ion collisions can search QCD critical point?

Lots of nucleons from boost nucleus, only part of anti-nucleon from QCD vacuum Nucleon \gg Anti-Nucleon: large μ_B

Hot and dense region Nucleon >> Anti-Nucleon

High energy collisions Most of the nucleon anti-nucleon pairs from QCD vacuum **Nucleon~ Anti-Nucleon: small** μ_B

=>Tuning $\sqrt{s_{NN}}$, scan the QCD phase diagram

The observable of QCD phase transition in Heavy-Ion Collisions

Theory of phase transition

Order parameter: identify symmetry and symmetry breaking

Lev Landau

Lessons:

- Different shape of distribution(free energy) in different region of phase diagram
- 2. Large fluctuations near critical point

10/25

QCD phase diagram

11/25

QCD phase diagram

Event-by-event Multiplicity distribution

STAR, PRL126, 092301 (2021) STAR, 2101.12413 (long paper)

13/25

QCD phase diagram

Beam Energy Scan first phase (BES-I)

\rightarrow Scanning QCD phase diagram :

- Shape of net-proton multiplicity distribution and $_{O^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!O^{\!\!\!\!\!\!\!\!\!\!\!\!}}}$ the observable of QCD phase transition
- Preliminary agrees with experiments ۲

Recent experiment progress

Net-proton fluctuations near critical point

• Higher statistics and detector acceptance

Kurtosis at BESI

STAR, PRL 126,092301 STAR,PRL 128,202303

Possible solution: heavy-ion collisions is complex system

QGP fireball system in heavy-ion experiments

- QGP fireball system created in heavy-ion experiments is not an ideal system:
 - Fast expanding
 - Finite size
 - Inhomogeneous temperature and chemical potential
 - Volume fluctuation and quantum fluctuations
 - Conservation contamination

Fast expanding effects

Lijia Jiang, Shanjin Wu and Huichao Song, NPA.2017.06.047

200

100

- Expanding effects suppress the fluctuations
- Expanding effects reverse the sign \bullet
- Expanding effects move the maximum

fluctuations

15

20

t [fm]

25

Inhomogeneous T and mu effects

• Inhomogeneous T and mu effects enhances the magnitude of fluctuations

QGP fireball system in heavy-ion experiments

- QGP fireball system created in heavy-ion experiments is not an ideal system:
 - Fast expanding
 - Finite size
 - Inhomogeneous temperature and chemical potential
 - Volume fluctuation and quantum fluctuations
 - Conservation contamination
- Build a model to describe all these effects

"Standard model" in Heavy-ion collisions: Hydrodynamics

Dynamical models near QCD critical point

Modeling in expanding QGP: Hydrodynamics + Critical fluctuations

- Model A (order parameter field)
 S.Mukherjee et al15' 16', L.Jiang et al17', S.Wu et al 19', S.Tang et al 23',
- Model B (conserved field) M.Sakaida et al 17', S.Wu et al 19', M.Nahrgang et al 19', G.Pihan et al 22'...
- **Model H** (conserved order parameter field + momentum+...) it is hard and in progress
- **Non-equilibrium chiral hydrodynamics** (hydro + order parameter) M. Nahrgang et al 11'12'14'16'19'
- Hydro+, hydro++... (hydro + slow modes)
 M. Stephanov et al 18'19'20', N. Abbasi et al 22', L. Du et al 20',.....
- Fluctuating hydrodynamics (hydro + noise) J.Kapusta et al 12',12', K.Murase et al 13', X.An et al 19',21'...
- **Hydro-kinetics** (deterministic fluctuating hydro) D.Teaney et al 17'18'19'22'...

See reviews: e.g. Lipei Du et al. 2402.10183; Xin An et al., 2108.13867; Shanjiu Wu, et al.,2104.13250; Marcus Bluhm et al., 2001.08831; Adam Bzdak et al.,1906.00936;M.Asakawa et al.,1512.05308 **23/25**

Experiment measurements and theory efforts

Summary

- QCD phase diagram is an exciting area with rich physics required exploration.
- Preliminary agreements between experiments and theory suggesting the existing critical point and first order phase transition at finite baryon chemical potential.
- More comprehensive study is required for the conclusive observation of QCD critical point.

Thank you!