Lepton flavor of four-fermion operator and fermion portal dark matter

Gang Li (李刚)

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai

Yuxuan He, GL, Jia Liu, Xiao-Ping Wang, Xiang Zhao, 2407.06523

第十七届粒子物理、核物理和宇宙学交叉学科前沿问题研讨会

贵阳 2024年7月14日

Four-fermion operators

Four-fermion interaction prior to the SM

Four-fermion operators

Four-fermion interactions in the SMEFT (d = 6) Wilson coefficients $\frac{C_i}{\Lambda^2}$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating					
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\frac{1}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]}$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{lpha})\right]$	$(j)^T C q_r^{\beta}$	$)^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$		
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}] [$\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{leau}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$						

unknown C_i and Λ

B. Grzadkowski, et al, 1008.4884 (JHEP)

Four-fermion operators

Flavor symmetry

	N	No symmetry			$\ U(3)^5$						
Operators	3 (Gen.	1 0	Gen.	Ex	act	$ \mathcal{O}($	$(Y_{e,d,u}^1)$	$\mathcal{O}(1)$	Y_e^1, Y_e^1	$V_d^1 Y_u^2)$
$(\bar{L}L)(\bar{L}L)$	171	126	5		8		8	·	14	1 <u></u> 2	
$(ar{R}R)(ar{R}R)$	255	195	7	—	9	10 13	9		14	—	
$(ar{L}L)(ar{R}R)$	360	288	8	-	8		8	8 	18	—	strongly
$(ar{L}R)(ar{R}L)$	81	81	1	1	, 		-			-	suppressed
$(ar{L}R)(ar{L}R)$	324	324	4	4			-	-	4	4	ouppi coocu
	$\begin{array}{c} \text{Operators} \\ (\bar{L}L)(\bar{L}L) \\ (\bar{R}R)(\bar{R}R) \\ (\bar{L}L)(\bar{R}R) \\ (\bar{L}R)(\bar{R}L) \\ (\bar{L}R)(\bar{L}R) \end{array}$	Operators 3 ($(\bar{L}L)(\bar{L}L)$ 171 $(\bar{R}R)(\bar{R}R)$ 255 $(\bar{L}L)(\bar{R}R)$ 360 $(\bar{L}R)(\bar{R}L)$ 81 $(\bar{L}R)(\bar{L}R)$ 324	Operators 3 Gen. $(\bar{L}L)(\bar{L}L)$ 171 126 $(\bar{R}R)(\bar{R}R)$ 255 195 $(\bar{L}L)(\bar{R}R)$ 360 288 $(\bar{L}R)(\bar{R}L)$ 81 81 $(\bar{L}R)(\bar{L}R)$ 324 324	Operators 3 Gen. 1 orgen $(\bar{L}L)(\bar{L}L)$ 171 126 5 orgen $(\bar{R}R)(\bar{R}R)$ 255 195 7 orgen $(\bar{L}L)(\bar{R}R)$ 360 288 8 orgen $(\bar{L}R)(\bar{R}L)$ 81 81 1 orgen $(\bar{L}R)(\bar{L}R)$ 324 324 4 orgen	Operators No symmetry $(\bar{L}L)(\bar{L}L)$ 171 126 5 $(\bar{R}R)(\bar{R}R)$ 255 195 7 $ (\bar{L}L)(\bar{R}R)$ 360 288 8 $ (\bar{L}R)(\bar{R}L)$ 81 81 1 1 $(\bar{L}R)(\bar{L}R)$ 324 324 4 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No symmetry $U(3)$ Operators3 Gen.1 Gen.Exact $\mathcal{O}(Y_{e,d,u}^1)$ $(\bar{L}L)(\bar{L}L)$ 1711265-8- $(\bar{R}R)(\bar{R}R)$ 2551957-9- $(\bar{L}L)(\bar{R}R)$ 3602888-8- $(\bar{L}R)(\bar{R}L)$ 818111 $(\bar{L}R)(\bar{L}R)$ 32432444	No symmetry $U(3)^5$ Operators3 Gen.1 Gen.Exact $\mathcal{O}(Y_{e,d,u}^1)$ $\mathcal{O}(Y_{e,d,u}^1)$ $(\bar{L}L)(\bar{L}L)$ 1711265-8-14 $(\bar{R}R)(\bar{R}R)$ 2551957-9-14 $(\bar{L}L)(\bar{R}R)$ 3602888-8-18 $(\bar{L}R)(\bar{R}L)$ 818111 $(\bar{L}R)(\bar{L}R)$ 324324444	No symmetry $U(3)^5$ Operators3 Gen.1 Gen.Exact $\mathcal{O}(Y_{e,d,u}^1)$ $\mathcal{O}(Y_e^1, Y)$ $(\bar{L}L)(\bar{L}L)$ 1711265-8-14- $(\bar{R}R)(\bar{R}R)$ 2551957-9-9-14- $(\bar{L}L)(\bar{R}R)$ 3602888-8-8-18- $(\bar{L}R)(\bar{R}L)$ 818111 $(\bar{L}R)(\bar{L}R)$ 3243244444

CP-even -odd

Faroughy, Isidori, Wilsch, Yamamoto 2005.05366 (JHEP)

Focus on the semileptonic operator of type $\overline{L}R\overline{R}L$

$$O_{ledq}^{\alpha\beta st} = \left(\bar{L}_{\alpha}^{j}e_{R\beta}\right)\left(\bar{d}_{Rs}Q_{t}^{j}\right) \qquad L = \begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} \qquad Q = \begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}$$

flavor indices: s = t = 1 $(\alpha, \beta) = (2, 2), (1, 2)$

李刚/中山大学

Lepton flavor conserving (LFC) scenario

- L: low-energy charged current processes (neutron, nuclear, and meson decays)
- EW: electroweak precision observables
- C: Drell-Yan collider processes ($pp \rightarrow ll$ and $pp \rightarrow l\nu$)

In order to avoid tensions among different observables, global fits are essential. Using current data,

 $C_{ledg}^{2211}/\Lambda^2 = (0.017 \pm 0.039) \text{ TeV}^{-2}$ V. Cirigliano, et al., 2311.00021 (JHEP)

consistent with zero at 1 sigma

Lepton flavor violating (LFV) scenario

probe of the LFV semileptonic operator

$$\operatorname{CR}(\mu^{-} + (A, Z) \to e^{-} + (A, Z)) \equiv \frac{\Gamma(\mu^{-} + (A, Z) \to e^{-} + (A, Z))}{\Gamma(\mu^{-} + (A, Z) \to \text{ capture })}$$

cLFV obs.	Presentuppe	er bounds $(90\% \mathrm{CL})$
$\mathrm{CR}(\mu \to e, \mathrm{S})$	7.0×10^{-11}	Badertscher $et al.$ (1982)
$\mathrm{CR}(\mu \to e,\mathrm{Ti})$	4.3×10^{-12}	SINDRUM II (1993)
$\mathrm{CR}(\mu \to e, \mathrm{Pb})$	4.6×10^{-11}	SINDRUM II (1996)
$\mathrm{CR}(\mu \to e,\mathrm{Au})$	7.0×10^{-13}	SINDRUM II (2006)

Lepton flavor violating (LFV) scenario

Lepton flavor violating (LFV) scenario

Mu2e (Fermilab):

commissioning starts in early 2025

COMET (J-PARC):

Lepton flavor violating (LFV) scenario

Mu2e (Fermilab):

commissioning starts in early 2025

~20m

Using expected sensitivity:

$$\operatorname{CR}\left(\mu^{-} + \operatorname{Al} \to e^{-} + \operatorname{Al}\right) < 10^{-17}$$

$$C_{ledg}^{1211}/\Lambda^2 < (2.9 \times 10^4 \text{ TeV})^{-2}$$

W. Haxton et al., 2406.13818

COMET (J-PARC):

• Pion capture solenoid still under preparation.

extraordinarily sensitive probe of new physics

Two questions

• In the LFC scenario:

 $C_{ledg}^{2211}/\Lambda^2 = (0.017 \pm 0.039) \text{ TeV}^{-2}$ (current)

How to uncover the relevant new physics?

• In the LFV scenario:

 $C_{ledq}^{1211}/\Lambda^2 < (2.2 \times 10^3 \text{ TeV})^{-2}$ (current) $C_{ledq}^{1211}/\Lambda^2 < (2.9 \times 10^4 \text{ TeV})^{-2}$ (future)

How to alleviate the mass scale of new physics?

Two questions

• In the LFC scenario:

 $C_{ledq}^{2211}/\Lambda^2 = (0.017 \pm 0.039) \text{ TeV}^{-2}$ (current) How to uncover the relevant new physics? $L_{\alpha} = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{\alpha}$ \implies measuremets of neutrino non-standard interactions

• In the LFV scenario:

 $C_{ledq}^{1211}/\Lambda^2 < (2.2 \times 10^3 \text{ TeV})^{-2}$ (current) $C_{ledq}^{1211}/\Lambda^2 < (2.9 \times 10^4 \text{ TeV})^{-2}$ (future)

How to alleviate the mass scale of new physics?

four-fermion interaction from dark loop

Neutrino Non-Standard Interactions

Charged-current neutrino NSIs:

$$\mathcal{L}_{\rm CC} \supset -\frac{2V_{ud}}{v^2} \left\{ \frac{1}{2} \left[\epsilon_S \right]^{ij}_{\alpha\beta} \left(\bar{u}_i d_j \right) \left(\bar{\ell}_{\alpha} P_L \nu_{\beta} \right) \right. \\ \left. -\frac{1}{2} \left[\epsilon_P \right]^{ij}_{\alpha\beta} \left(\bar{u}_i \gamma_5 d_j \right) \left(\bar{\ell}_{\alpha} P_L \nu_{\beta} \right) + \text{ h.c. } \right\} \qquad \frac{C_{ledq*}^{2211}}{\Lambda^2} = \frac{-2V_{ud}}{v^2} \left[\epsilon_S \right]^{11}_{22} = \frac{-2V_{ud}}{v^2} \left[\epsilon_P \right]^{11}_{22} \\ \left. \delta\Gamma \left(\pi^+ \to \mu^+ \nu_{\mu} \right) \right]$$
 modifies the neutrino sources

$$\approx \frac{\left(m_{\pi}^2 - m_{\mu}^2\right)^2 m_{\mu}^2}{64\pi m_{\pi}^3} \left| J_{\pi\mu} \left(\frac{V_{ud}}{v^2} \left[\epsilon_P \right]_{22}^{11} \right)^2 \right|^2 \qquad J_{\pi\mu} = \frac{m_{\pi}^2}{m_{\mu} \left(m_u + m_d\right)} \sim 20$$

Neutrino Non-Standard Interactions

Charged-current neutrino NSIs:

$$\approx \frac{\left(m_{\pi}^2 - m_{\mu}^2\right)^2 m_{\mu}^2}{64\pi m_{\pi}^3} \left| J_{\pi\mu} \left(\frac{V_{ud}}{v^2} \left[\epsilon_P \right]_{22}^{11} \right)^2 \right|^2 \qquad J_{\pi\mu} = \frac{m_{\pi}^2}{m_{\mu} \left(m_u + m_d\right)} \sim 20$$

Next-generation oscillation experiments

	T2HK limit	DUNE limit	JUNO limit	T2HK and DUNE limit	JUNO and TAO limit
Operator	(TeV)	(TeV)	(TeV)	(TeV)	(TeV)
$\mathcal{O}_{ledq_{2211}}$	9.1	11.2	0.7	12.3	0.7
$\mathcal{O}_{ledq_{1211}}$	454.2	19.3	1.2	454.2	1.2

Among the most sensitive LFC operators to probe:

 $C_{ledq}^{2211}/\Lambda^2 < (12.3 \text{ TeV})^{-2}$

Y. Du, H.-L. Li, J. Tang, S. Vihonen, J.-H. Yu 2106.15800 (PRD)

Dark loop

UV completions of four-fermion operators

dark particles in box diagram

Cepedello, Esser, Hirsch, Sanz, 2302.03485 (JHEP)

D-I-1 provides the simplest realization for

 $O_{ledq}^{\alpha\beta st} = \left(\bar{L}_{\alpha}^{j}e_{R\beta}\right)\left(\bar{d}_{Rs}Q_{t}^{j}\right)$ $(\alpha,\beta) = (2,2), (1,2) \quad s = t = 1$

Two key points to alleviate the new physics scale:

- loop factor $\sim 1/16\pi^2$
- coupling dependence $\sim f_{
 m NP}^4$

Fermion portal dark matter

UV completion with dark particles

new fields	$SU(3)_C$	${ m SU}(2)_{ m L}$	$U(1)_{\rm Y}$	Z_2
χ	1	1	0	-1
F	1	2	$\frac{1}{2}$	-1
S	1	1	1	-1
ϕ_d	3	1	$-\frac{1}{3}$	-1

$$\mathcal{L} = f_{LS} \left(\bar{L} F_R \right) S^* + f_{\chi S} \left(\bar{\chi}_L \mu_R \right) S + f_{FQ} \left(\bar{F}_R Q \right) \phi_d^* + f_{d\chi} \left(\bar{d}_R \chi_L \right) \phi_d + \text{ h.c.}$$

$$f_{\rm NP} \equiv \left(f_{LS} f_{\chi S} f_{FQ} f_{d\chi}\right)^{1/4}$$

Majorana DM:	χ	
mediators:	S, ϕ_d	
lepton:	F	

Cepedello, Esser, Hirsch, Sanz, 2302.03485 (JHEP) An, Wang and H. Zhang, 1308.0592 (PRD) Bai, Berger, 1308.0612 (JHEP) DiFranzo, Nagao, Rajaraman, Tait, 1308.2679 (JHEP)

Wilson coeffcients

Model-indepdent constraints

DM relic density

Majorana DM annihilation at tree-level

DM direct detection

Majorana DM scattering at tree-level

Effective interactions:

 $\mathcal{O}_{V} = \left(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\right)\left(\bar{d}\gamma_{\mu}d\right) \qquad \mathcal{O}_{S} = m_{d}\bar{\chi}\chi\bar{d}d$ $\mathcal{O}_{A} = \left(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\right)\left(\bar{d}\gamma_{\mu}\gamma^{5}d\right) \qquad \mathcal{O}_{D} = \left[\bar{\chi}i\left(\partial^{\{\mu}\gamma^{\nu\}}\right)\chi\right]\left[\bar{d}\left(\gamma^{\{\mu}iD_{-}^{\nu\}} - \frac{g^{\mu\nu}}{4}i\not{D}_{-}\right)d\right]$

K. A. Mohan, D. Sengupta, T. M. P. Tait, B. Yan, C. P. Yuan, 1903.05650 (JHEP)

Exclusion limit from DM direct detection is dominated by SD interactions associated with \mathcal{O}_A

李刚/中山大学

DM direct detection

Majorana DM scattering at tree-level

- The relic density of χ as the observed total DM relic density is assumed
- Limits could be notably weaker if the relic density depends on a give $f_{\chi S}$ Benchmarks:

 $f_{d\chi} = 1, \quad m_{\phi} = 2 \text{ TeV}$ no exclusion

 $f_{d\chi} = 2$, $m_{\phi} = 2.5 \text{ TeV}$ \longrightarrow 15 GeV $< m_{\chi} < 100 \text{ GeV}$ is excluded

李刚/中山大学

Leptons + MET: $m_F \ge m_\phi > m_S > m_\chi$

- SL2 and SL3 are negligible given $m_F \star$
- Only muons are in the final state

李刚/中山大学

 μ_R

 $\cdot \overline{d}_R$

L

F

S

 ϕ_d

Leptons + MET: $m_F \ge m_\phi > m_S > m_\chi$

SL1: $pp \to S^+S^-, S^{\pm} \to \mu^{\pm}\chi$; in both LFC and LFV scenarios

We read off the exclusion limits on the masses of right-handed slepton (smuon) and neutralino and reinterpret them as

J. Liu, X.-P. Wang, K.-P. Xie, 2104.06421 (JHEP) Q.-H. Cao, GL, K.-P. Xie, J. Zhang, 1711.02113 (PRD)

 $\begin{aligned} \text{Jet}(\mathbf{s}) + \text{MET:} & m_F \geq m_\phi > m_S > m_\chi \\ & \text{SJ1:} \ pp \to \chi \bar{\chi} j \ (3\text{-body}), \ j = g, \ d \ \text{or} \ \bar{d}; \\ & \text{SJ2:} \ pp \to \phi_d^{\pm 1/3} \chi, \ \phi_d^{\pm 1/3} \to \bar{\chi} j; \\ & \text{SJ3:} \ pp \to \phi_d^{+1/3} \phi_d^{-1/3}, \ \phi_d^{\pm 1/3} \to \chi j; \end{aligned}$

parton level:

SJ1

SJ3

 $\begin{aligned} \mathsf{Jet}(\mathsf{s}) + \mathsf{MET}: & m_F \geq m_\phi > m_S > m_\chi \\ & \text{SJ1: } pp \to \chi \bar{\chi} j \text{ (3-body)}, \ j = g, \ d \text{ or } \bar{d}; \\ & \text{SJ2: } pp \to \phi_d^{\pm 1/3} \chi, \ \phi_d^{\pm 1/3} \to \bar{\chi} j; \\ & \text{SJ3: } pp \to \phi_d^{+1/3} \phi_d^{-1/3}, \ \phi_d^{\pm 1/3} \to \chi j; \end{aligned} \right] \xrightarrow{\mathsf{monojet}+\mathsf{MET} \text{ search}} \\ \end{aligned}$

parton level:

李刚/中山大学

Jet(s) + MET at LHC Run 2:

monojet+MET search :

- $\not\!\!E_T > 200$ GeV, leading jet $p_T > 150$ GeV and $|\eta| < 2.4$;
- up to four jets with $p_T > 30$ GeV and $|\eta| < 2.8$;
- $|\Delta \phi(\text{jet}, \mathbf{p}_T)| > 0.4 \ (0.6) \text{ for } \mathbf{E}_T > 250 \text{ GeV} \ (< 250 \text{ GeV});$
- veto of electron, muon, τ -lepton or photon.

dijet+MET search:

- $m_{\rm eff} > 800 {
 m ~GeV};$
- veto of electron (muon) with $p_T > 6(7)$ GeV,

 $f_{d\chi} = 1, \ m_{\phi} \ge 1.76 \text{ TeV}$ $f_{d\chi} = f_{FQ} = 2, \ m_{\phi} \ge 2.3 \text{ TeV}$

Combined results

Benchmark scenarios:

BM	$m_{\phi}[\text{TeV}]$	$m_F \; [\text{TeV}]$	$f_{LS} = f_{FQ}$	$f_{d\chi}$	$f_{\chi S}$	$\Omega_{\chi}h^2$
(a)	2.5	3.0	2.1	2.0	2.0	/
(b)	2.5	3.0	2.1	2.0	/	0.1199
(c)	2.0	2.0	1.41×10^{-2}	1.0	1.5	/
(d)	2.0	2.0	1.41×10^{-2}	1.0	/	0.1199

$$f_{\rm NP} \equiv \left(f_{LS} f_{\chi S} f_{FQ} f_{d\chi}\right)^{1/4}$$

$$f_{\rm NP} = 2.05 \qquad (\rm LFC)$$

 $f_{\rm NP} = 0.1314$ (LFV)

from collider searches and DM direct detection

Combined results

LFC scenarios:

Combined results

LFV scenarios:

- no constraint from current DM direct detection
- sensitive to much smaller new physics couplings (f_{LS}, f_{FQ})

Summary

- We have studied the interplay of neutrino, dark matter and cLFV
- We find that
 - neutrino NSIs measured in next-generation oscillation experiments could uncover LFC new physics
 - dark loop could significantly alleviate the mass scale of LFV new physics
 - model-independent constraints on the Wilson coefficients offer a distinctive probe of the fermion portal DM model, especially in the compressed mass region

muon collider

$\langle \neg$			

		(
BM	$m_{\phi}[\text{TeV}]$	$m_F \; [\text{TeV}]$	$f_{LS} = f_{FQ}$	$f_{d\chi}$	$f_{\chi S}$	$\Omega_{\chi} h^2$
(a)	2.5	3.0	2.1	2.0	2.0	/
(b)	2.5	3.0	2.1	2.0	/	0.1199
(c)	2.0	2.0	1.41×10^{-2}	1.0	1.5	/
(d)	2.0	2.0	1.41×10^{-2}	1.0	/	0.1199