

Distinguishing Dirac/Majorana Heavy Neutrino at Future Lepton Colliders

Yandong Liu

Beijing Normal University

Collaboration with Qing-Hong Cao and Kun Cheng

2024.7.14

Motivation

How to identify the nature of a fermion (heavy neutral lepton)? Is it Dirac or Majorana?

 $y_{\ell^-W^+}$

Beijing Normal University

 $y_{\ell^-W^+}$

Proposal of Majorana Fermion:1937

Ettore Majorana

Home > Il Nuovo Cimento (1924–1942) > Article

positrone Published: 21 September 2008

Volume 14, pages 171–184, (1937) Cite this article

Majorana Equation:

(— I

2. Charge-conjugate four-component

iðψ

3. Complex two-component

 $iar{\sigma}^{\mu}$

	Majorana in the 1930s
Born	5 August 1906 Catania, Italy
Died	Missing since 1938, likely sti alive in 1959 ^[1] unknown

Beijing Normal University

Teoria simmetrica dell'elettrone e del

1. Purely hermitian Dirac operator

$$\frac{\partial}{\partial t} - i\hat{\alpha} \cdot \nabla + \beta m)\psi = 0$$

$$\alpha - m\psi^c = 0$$

$$\partial_{\mu}\psi_{L} + \eta m\omega\psi_{L}^{*} = 0$$

ydliu@bnu.edu.cn

Particle = Anti-Particle $\Psi \equiv \Psi^{c}$

Whether the Majorana fermion (mode) exists?

Paired states of fermions in two dimensions with breaking of parity and timereversal symmetries and the fractional quantum Hall effect

N Read, D Green Physical Review B, 2000 • APS

Abstract

We analyze pairing of fermions in two dimensions for fully gapped cases with broken parity (P) and time reversal (T), especially cases in which the gap function is an orbital angular momentum (I) eigenstate, in particular I=-1 (p wave, spinless, or spin triplet) and I=-2 (d wave, spin singlet). For $I \neq 0$, these fall into two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the

SHOW MORE ~

 $\cancel{2}$ Save $\cancel{99}$ Cite Cited by 3850 Related articles All 8 versions

Unpaired Majorana fermions in quantum wires AY Kitaev

Physics-uspekhi, 2001 • iopscience.iop.org

Abstract

Certain one-dimensional Fermi systems have an energy gap in the bulk spectrum while boundary states are described by one Majorana operator per boundary point. A finite system of length L possesses two ground states with an energy difference proportional to exp ÀLal0 and different fermionic parities. Such systems can be used as qubits since they are intrinsically immune to decoherence. The property of a system to have boundary Majorana fermions is expressed as a condition on the bulk electron spectrum. The

SHOW MORE ~

American Physical Society

https://link.aps.org > doi > PhysRevLett.86.268

Non-Abelian Statistics of Half-Quantum Vortices in \$\mathit{p}

by DA Ivanov · 2001 · Cited by 2217 — Excitation spectrum of a half-quantum vortex in a \$p\$-

wave superconductor contains a zero-energy Majorana fermion.

Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices

V Mourik, K Zuo, SM Frolov, <u>SR Plissard</u>... - Science, 2012 - science.org Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. Here, we report electrical measurements on indium antimonide nanowires contacted with one normal (gold) and one superconducting (niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields on the order of 100 millitesla, we observe bound, midgap states at zero ... ☆ Save ፵ Cite Cited by 4794 Related articles All 21 versions

Search for Majorana fermions in superconductors CWJ Beenakker - Annu. Rev. Condens. Matter Phys., 2013 - annualreviews.org ... In **condensed matter** we can build on what nature offers, by constructing quasiparticle excitations with exotic ... This transforms a thermal insulator into a thermal metal (113, 114). ... ☆ Save ፵ Cite Cited by 2041 Related articles All 6 versions

Beijing Normal University

New directions in the pursuit of Majorana fermions in solid state systems J Alicea

Reports on progress in physics, 2012 • iopscience.iop.org

Abstract

The 1937 theoretical discovery of Majorana fermions—whose defining property is that they are their own anti-particles—has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to

SHOW MORE ~

 $\cancel{2}$ Save $\cancel{5}$ Cite Cited by 3290 Related articles All 17 versions

Nonabelions in the fractional quantum Hall effect G Moore, N Read Nuclear Physics B, 1991 • Elsevier

Abstract

Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these objects "nonabelions". It is argued that universality classes of fractional quantum Hall systems can

SHOW MORE ~

 $\cancel{2}$ Save $\cancel{99}$ Cite Cited by 3524 Related articles All 12 versions

Whether the Majorana fermion exists in SM?

Beijing Normal University

Electron effective Majorana Mass:

$m_{ee} < 61 - 165 \text{ meV}$

Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen

A. Gando,¹ Y. Gando,¹ T. Hachiya,¹ A. Hayashi,¹ S. Hayashida,¹ H. Ikeda,¹ K. Inoue,^{1,2} K. Ishidoshiro,¹ Y. Karino,¹ M. Koga,^{1,2} S. Matsuda,¹ T. Mitsui,¹ K. Nakamura,^{1,2} S. Obara,¹ T. Oura,¹ H. Ozaki,¹ I. Shimizu,¹ Y. Shirahata,¹ J. Shirai,¹ A. Suzuki,¹ T. Takai,¹ K. Tamae,¹ Y. Teraoka,¹ K. Ueshima,¹ H. Watanabe,¹ A. Kozlov,² Y. Takemoto,² S. Yoshida,³ K. Fushimi,⁴ T.I. Banks,⁵ B.E. Berger,^{2,5} B.K. Fujikawa,^{2,5} T. O'Donnell,⁵ L.A. Winslow,⁶ Y. Efremenko,^{2,7} H.J. Karwowski,⁸ D.M. Markoff,⁸ W. Tornow,^{2,8} J.A. Detwiler,^{2,9} S. Enomoto,^{2,9} and M.P. Decowski^{2,10}

(KamLAND-Zen Collaboration)

Interactions of neutrinos

	Dirac	Μ
Charged Current Interaction	$e_L^{\dagger} \bar{\sigma}^{\mu} \nu_L W_{\mu}^- + h . c .$	$e_L^\dagger ar{\sigma}^\mu u_L$
Nuetral Current Interaction	$ u_L^{\dagger} \bar{\sigma}^{\mu} \nu_L Z_{\mu}$	$ u_L^\dagger ar c$
Mass term	$\nu_L \nu_R + h \cdot c$.	$ u_L u_L$

Beijing Normal University

Experiments to explore the neutrino Majorana mass

• The neutrinoless double beta decay experiments

Lepton number violation $m_{ee} < 61 - 165 \text{ meV}$

• The PTOLEMY experiment: cosmic neutrinos (non-relativistic neutrinos)

$$\Gamma_M = 2\Gamma_D \simeq$$

Beijing Normal University

2 8/v

Experiments to explore the neutrino Majorana mass

• The neutrinoless double beta decay experiments

Beijing Normal University

Colliders power $\propto \frac{m_{\nu}}{\sqrt{s}}$ eV tic Impossible to answer the question at collider?

Massive neutrinos: new physics beyond the SM

- 1. Yukawa interaction: right-handed neutrino (spectator) J. Zhang, S. Zhou, *Nucl.Phys.B* 903 (2016) 211-225
- 2. Loop-level seesaw mechanism: Z_2 symmetry (dark sector) E. Ma, Phys. Rev. Lett. 81, 1171 (1998); E. Ma, Phys. Rev. D73, 077301 (2006); R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D74, 015007 (2006); Q.-H. Cao, E. Ma, and G. Rajasekaran, Phys. Rev. D76,095011 (2007); Q.-H. Cao, S.-L. Chen, E. Ma, B. Yan, D.-M. Zhang, Phys.Lett.B 779 (2018) 430-435
- 3. Tree-level seesaw mechanism

Phys. Rev. D 34, 1642 (1986)

4. String theory or extra dimension m

A. Lukas and A. Romanino, (2000), arXiv:hep-M. Neubert, Phys. Lett. B 474, 361 (2000) ;A. D A. Strumia, and K. Tobe, Nucl. Phys. B 623, 395 (2002) W. Rodejohann and H. Zhang, Phys. Lett. B 737, 81 (2014)

Beijing Normal University

P. Minkowski, Phys. Lett. B 67, 421 (1977); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); T. Yanagida, Conf. Proc. C 7902131, 95 (1979); M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc. C 790927, 315 (1979); J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980); M. Magg and C. Wetterich, Phys. Lett. B 94, 61 (1980);T. P. Cheng and L.-F. Li, Phys. Rev. D 22, 2860 (1980); R. N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986); R. N. Mohapatra and J. W. F. Valle,

$$\nu$$
nodelsph/0004130; Y. Grossman andDe Gouvea, G. F. Giudice,HH

Heavy Neutral Lepton (HNL)

tree-level seesaw mechanism or string theory or extra dimension models

Heavy neutral lepton: Dirac or Majorana N

$$\sum_{i=e,\mu,\tau} \frac{g}{\sqrt{2}} U_i W_{\sigma}^- \bar{\ell}_{iL} \gamma^{\sigma} N + h \cdot c \cdot \cdot$$

Beijing Normal University

HNL@Hadron Colliders

T. Han and B. Zhang, Phys. Rev. Lett. 97, 171804 (2006); A. Atre, T. Han, S. Pascoli, and B. Zhang, JHEP 05, 030 (2009); A. Atre, T. Han, S. Pascoli, and B. Zhang, JHEP 05, 030 (2009); A. Das and N. Okada, Phys. Rev. D 88, 113001 (2013); P. S. B. Dev, A. Pilaftsis, and U.-k. Yang, Phys. Rev. Lett. 112, 081801 (2014); E. Arganda, M. J. Herrero, X. Marcano, and C. Weiland, Phys. Lett. B 752, 46 (2016); C. O. Dib, C. S. Kim, K. Wang, and J. Zhang, Phys. Rev. D 94, 013005 (2016); A. Das, P. Konar, and A. Thalapillil, JHEP 02, 083 (2018)

 $\tilde{\nu}_{\mu}$

N N

Beijing Normal University

ydliu@bnu.edu.cn

11

I. Chakraborty, H. Roy, and T. Srivastava, (2022), 10.1140/ep jc/s10052-023-11406-0; T. Li, C.-Y. Yao, and M. Yuan, JHEP 09, 131 (2023); T. H. Kwok, L. Li, T. Liu, and A. Rock, (2023), arXiv:2301.05177; P. Li, Z. Liu, and K.-F. Lyu, JHEP 03, 231 (2023), arXiv:2301.07117; R.-Y. He, J.-Q. Huang, J.-Y. Xu, F.-X. Yang, Z.-L. Han, and F.-L. Shao, (2024), arXiv:2401.14687

Beijing Normal University

P. Li, Z. Liu, and K.-F. Lyu, JHEP 03, 231 (2023)

Beijing Normal University

Beijing Normal University

$$y_N = \frac{1}{2} \log \frac{E + pc}{E - pc}$$
$$e^{4y_N} (se^{2y_N} - m_N^2)$$
$$e^{2y_N} + 1)^2 (s + m_W^2 - e^{2y_N} (m_N^2 - m_W^2))^2$$

$$\log(s + m_W^2)/(m_N^2 - m_W^2)$$
 for $m_N > m_W$

$$M \quad y_N = \frac{1}{2} \log(x_1/x_2) = \frac{1}{2} \log(s/x_1) + \frac{1}{2} \log(s/x_1)$$

(M1)

Beijing Normal University

 y_N

Dirac: $N \neq \overline{N}$ Majorana: $N = \overline{N}$

Beijing Normal University

Simulation @ the high energy muon collider

 y_N

Beijing Normal University

 $y_{\ell^-W^+}$

Discrimination at the 3 TeV muon collider

 $\sum g U_i W_{\sigma}^- \bar{\ell}_{iL} \gamma^{\sigma} N + h.c. \qquad N \to J$ $i=e,\mu,\tau$ Signal: $\mu^-\mu^+ \to N\bar{\nu} \to \ell^-W^+\bar{\nu} \to \ell^- jj\bar{\nu}$ for Dirac N $\mu^-\mu^+ \to N\bar{\nu}(N\nu) \to \ell^-W^+\bar{\nu}(\nu) \to \ell^-jj\bar{\nu}(\nu)$ for Majorana N

Backgrounds: $\mu^-\mu^+ \rightarrow W^+\ell^-\nu_\ell \rightarrow jj\ell^-\nu_\ell$ P. Li, Z. Liu, and K.-F. Lyu, JHEP 03, 231 (2023) $\gamma^* \gamma^* \to W^+ \ell^- \nu_\ell \to j j \ell^- \nu_\ell$ $\gamma^* \mu^+ \to \bar{\nu}_{\mu} W^+ \ell^+ \ell^- \to j j \ell^+ \ell^ \mu^-\mu^+ \to \nu_\mu \bar{\nu}_\mu W^+ \ell^+ \ell^- \to j j \ell^+ \ell^-$

Beijing Normal University

$$\mu^- W^+$$
 or $N \to e^- W^+$

 $\ell^{-} j j E_T$ or $\ell^{-} W_I E_T$

Cut efficiency at the 3 TeV muon collider

 $p_T^e > 20 \text{ GeV} |\eta^e| < 2.5$

W resonance:

 $\begin{cases} 2 \text{ jets } 50 \text{ GeV} < m_{j_1 j_2} < 100 \text{ GeV} \\ 1 \text{ fat jet } 50 \text{ GeV} < m_J < 100 \text{ GeV} \end{cases}$

N resonance: $m_{\ell^-W} \subset m_N \pm 5 \% m_N$

Beijing Normal University

Discovery at the 3 TeV muon collider

P. Li, Z. Liu, and K.-F. Lyu, JHEP 03, 231 (2023)

Beijing Normal University

Discrimination at the 3 TeV muon collider

Beijing Normal University

Mass and rapidity correlation

 $y_{\ell^-W^+}$

Beijing Normal University

Conclusion

- We propose to use the rapidity of reconstructed N to identify its nature, namely discriminate whether it is Dirac or Majorana fermion;
 - One peak: Dirac fermion Two peaks: Majorana fermion
- We found the nature of N can be deciphered once it is confirmed.

Beijing Normal University

Thanks!