

Status of TPC R&D for CEPC

Huirong Qi CEPC Track meeting, 2023.12.27

What is Time Projection Chamber?

- Operating principle: **Electric field and magnetic field are applied in parallel** in the TPC
 - 3-Dimensional (x, y, z) information
 - Momentum measurement, PID
 - Very low material budget

Principle of TPC detector

Momentum resolution

$$\frac{q_{p_{\perp}}}{p_{\perp}} = \sqrt{\left(\frac{a'\sigma_{x}}{BL^{2}}\right)^{2} \left(\frac{720}{N+4}\right)} p_{\perp}^{2} + \left(\frac{a'C}{BL}\right)^{2} \frac{10}{7} \left(\frac{x}{X_{0}}\right)$$
measurements multiple scattering
$$p_{\perp} : \text{transverse momentum} \quad B: \text{ strength of B-Field} \quad L: \text{ track detection length} \quad a', C: \text{ constant}$$

$$\sigma_{x} : \text{ position resolution} \quad N: \text{ #ofmeasurement} \quad \frac{x}{X_{0}}: \text{ radiation length of gas}$$

$$\text{TPC only...} \quad \frac{\sigma_{p_{\perp}}}{p_{\perp}} \approx 1 \times 10^{-4} p_{\perp} \text{ GeV/c}$$

$$Position resolution$$

$$\sigma_{x} = \sqrt{\sigma_{0}^{2} + \frac{C_{d}^{2} \cdot Z}{N_{eff}}} \quad \begin{array}{c} \text{strength length} \\ \text{Neff: effective number of electron} \\ \text{Cd: diffusion constant of gas} \\ \text{depends on drift length} \\ \text{small position resolution } \sigma_{x}$$

$$\sigma_{x} \approx 100 \ \mu\text{m}$$

even at the large drift length of 2.2 m

Motivation: TPC requiremetns from e+e- Higgs/EW/Top factories

- TPC can provide hundreds of hits with high spatial resolution compatible, with PFA design (low X_0)
 - $\sigma_{1/pt} \sim 10^{-4}$ (GeV/c)⁻¹ with TPC alone and $\sigma_{point} < 100 \mu m$ in r ϕ
- Provide dE/dx and dN/dx with a resolution <4%
 - Essential for Flavor physics @ Tera Z run

- Pad readout TPC for Higgs run at CEPC
 - TPC is an irreplaceable tool for 3D track reconstruction and for particle identification with almost no material budget.
 - **LP prototype have been validated** by the beam test @5GeV/e.
 - TPC is **essential for PID using dE/dx (<4%),** though a TOF with 10 ps or less resolution can help for moderate momenta(<20 GeV)
 - Central Tracking is entrusted to a pad readout TPC detector.

TPC parameters for Higgs run

Parameters			
B-field	3.0T		
Geometrical parameters	r _{in}	r _{out}	Z
	0.3m	1.8m	2.3m
Solid angle coverage	Up to $\cos\theta \simeq 0.98$ (10 pad rows)		
TPC material budget	\simeq 0.05 X ₀ including outer fieldcage in r		
	< 0.25 X ₀ for readout endcaps in z		
Number of pads	$\simeq 10^{6}/1000$ per endcap		
Pad pitch/ NO. of Padrows layers	\simeq 1 \times 6 mm ² / 220 points per track in r ϕ		
σ _{point} in rφ	\simeq 60 μm for zero drift, ≤ 100 μm overall		
σ _{point} in rz	\simeq 0.4 – 1.4 mm (for zero – full drift)		
2-hit separation in rφ	≃ 2 mm		
dE/dx resolution	≤ 4 %		
Momentum resolution at B = 3.0 T	$\delta(1/p_t) \simeq 1 \times 10^{-4}/\text{GeV/c}$ (TPC only)		

Pad readout TPC – Low power consumption and hybrid readout @IHEP

- Low power consumption ASIC has been developed for TPC readout.
 - Low power consumption FEE ASIC (~2.4 mW/ch including ADC)
- Hybrid readout module has been developed:
 - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
 - Spatial resolution of $\sigma_{r_{\varphi}} \leq 100 \ \mu m$ by TPC prototype
 - Pseudo-tracks with 220 layers (same as the actual size of CEPC baseline detector concept) and dE/dx is about 3.4 ± 0.3%

450

400

350

300

250

200

150

100

50

50

100

150

200

250

Without the magnetic field B=0T

Neff ~40 (Calibrated using ⁵⁵Fe)

UV laser mimicking the tracks

z [mm

https://doi.org/10.1016/j.nima.2022.167241 Huirong Oi # hits in track

Pad readout TPC technology – GEMs readout @LCTPC

- TPC prototype have been studied the beam under 1.0T.
 - GEMs with 100µm LCP insulator
 - Standard GEM from CERN
- Design idea of the GEM Module:
 - **No frame** at modules both sides
 - Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$, more stability by the broader arcs at top and bottom

Pad readout TPC technology – Resistive Micromegas readout @LCTPC

- Resistive Micromegas has been studied by the beam under 1.0T.
 - Bulk-Micromegas with 128 µm gap size between mesh and resistive layer.
- HV scheme of the module (ERAM) places grid on ground potential
 - Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$

Cooling system for readout electronics

- Readout electronics will require a cooling system. **2-phase CO2-cooling** is a very interesting candidate.
 - A fully integrated AFTER-based solution tested on 7 Micromegas modules during a test beam.
- To optimize the cooling performance and the material budget **3D-printing of aluminum** is an attractive possibility for producing the complex structures required.
 - A prototype for a full module is **validated at LCTPC**.

- Pixelated readout TPC for Z pole run at CEPC
 - In the Tera Z conditions, **these are typically of several hundred microns per point to a mm**, and even centimeters if one consider the charge created by the machine background.
 - In the Tera Z conditions at a high-luminosity circular collider, the **secondary ions back-flowing need to be strongly suppressed**, and corrections have to be dynamically applied using the pixelated readout.
 - Some **intense R&D program has to be addressed** even than simulation.

Results of the estimation ion charge density in Chamber

- For Higgs run, no problem detector factor for TPC
- For Z pole run
 - TPC with IBF*Gain=1 at CEPC-91

ightarrow at best, less or similar space-charge as at ALICE

Compare to ALICE-TPC environment

- Calculation of TPC radial ion space charge density: z=-200cm , (dz=10cm , dr=6mm)
 - $d\Omega = 2\pi r \, dr \, dz$; $\rho_{ion} = \frac{n_{ion}}{d\Omega}$
- Each BX~ $1.05e-6 \text{ nC/m^3/BX}$, 0.2e-6 nC/m³/BX (compared to uniformly distributed)
- Stable Max~ 1.05e-6 nC/m³/BX × 1/23ns × 50% × η = 11.4 nC/m³ (Only primary ions, η ionization efficiency)

Simulation of the pixelated TPC - ongoing

- Separation power was obtained based on the current reconstruction algorithm as well as the results of the resolutionSetup the optimaztion simulation framework.
- π/K resolution is better than 3 σ at 20 GeV and 50 cm drift distance.
- The dN/dx has an **good potential** to improve the resolution.
- TPC detecror module simulated **under 2T and T2K gas.**

Progress on pixel readout electronics

- Pixel readout R&D started and the design and testing of two versions of the chip completed.
- ROIC +Interposer PCB as RDL
 - High metal coverage, 4-side buttable
 - Low power Energy/Timing measurement ASIC
 - ~100 e noise
 - 5 ns drift time resolution
 - <100 mW/cm2
- 2nd version chip arrived and the tests are onging.

TPC R&D toward CEPC Phy.&Det. TDR

- Simulation and experiments studies needed for **CEPC TDR**.
 - MDI region optimized, lower Gain × IBF and reach the same level primary ions(Gain: 2000, IBF: ~0.1%)
 - TPC with IBF at Tera-Z with quasi continuous collisions @ CEPC/FCCee
 - Apply Micromegas+GEM, mutil-mesh Micromegas
 - Nano-material through which ions can be controlled
 - Ion backflow R&D with the **Grapheme foil**
- Low **power consumption** readout R&D of TPC FEE board based on WASA.
- Tests Low power Energy/Timing chip of the pixel readout chip. \rightarrow Collaboration: Tsinghua University

 \rightarrow Collaboration: CEA-Saclay, Shandong University

• In CEPC TPC study group, TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e+e- colliders.

- TPC as the main tracker detector to satisfy the physics requirements :
 - For Higgs run, W and top running, no problem for all TPC readout technologies.
 - Central Tracking is entrusted to a pad readout TPC detector.
 - For high luminosity (2×10^{36}) Z pole run:
 - Pixelated readout TPC is a good option at high luminosity on the circular e+e- collider.
 - The gating will not be possible, so we need an ion back flow suppression without gating R&D (double or triple mesh/mutil-Mesh, graphene membrane...)
 - Some intense R&D program has to be addressed.

Many thanks!