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What is Time Projection Chamber?

e QOperating principle: Electric field and magnetic field are applied in parallel in the TPC
e 3-Dimensional (X, y, z) information
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Principle of TPC detector even at the large drift length of 22 m
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Motivation: TPC requiremetns from e+e- Higgs/EW/Top factories

« TPC can provide hundreds of hits with high spatial resolution compatible, with PFA design (low X,)
Gyt ~10* (GeV/c) ™ with TPC alone and 6,,;,<100pm in r¢

* Provide dE/dx and dN/dx with a resolution <4%
Essential for Flavor physics @ Tera Z run
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* TPC module
TPC prototype with UV ||
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Pad readout TPC
To meet Higgs physics
Imm X 6mm of Pad

|

TPC track detector for
e+e- collider

Ion back flow study
Simulation of Ion Backflow
Test the UV light created
the ions by photoelectric
effect

Pixelated readout TPC

* To meet Z physics
* ~500pm of Pad

* dN/dx+dE/dx stud

TPC prototype with UV
laser track

PID performance Study

«  Simulation of the ionization

cluster in space

* PID studies of the different

readout TPC prototype

Key issues of TPC technology for e+e- collider

3



e Pad readout TPC for Higgs run at CEPC

e TPC is an irreplaceable tool for 3D track reconstruction and for
particle identification with almost no material budget.

e LP prototype have been validated by the beam test @5GeV/e.

e TPC is essential for PID using dE/dx (<4%), though a TOF with 10 ps
or less resolution can help for moderate momenta(<20 GeV)

e (Central Tracking is entrusted to a pad readout TPC detector.
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TPC parameters for Higgs run

Parameters .

B-field 3.0T
i r z
Geometrical parameters . | out |
03m | 1.8m | 2.3m
Solid angle coverage Up to cosO = 0.98 (10 pad rows)

) =~ 0.05 X, including outer fieldcage in r
TPC material budget .
< 0.25 X, for readout endcaps in z
Number of pads ~ 10%/1000 per endcap

Pad pitch/ NO. of Padrows layers ~ 1 X6 mm? /220 points per track in r¢

O point IN P =~ 60 um for zero drift, < 100 pm overall
O oint IN 12 =~ 0.4 - 1.4 mm (for zero — full drift)
2-hit separation in re ~2 mm

dE/dx resolution <4%

Momentum resolutionatB=3.0T 6(1/p,) = 1X10*/GeV/c (TPC only)




Pad readout TPC — Low power consumption and hybrid readout @IHEP
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* Low power consumption ASIC has been developed for TPC readout.
Low power consumption FEE ASIC (~2.4 mW/ch including ADC)
» Hybrid readout module has been developed:

IBF X Gain ~1 at Gain=2000 validation with GEM/MM readout

Spatial resolution of ¢ <100 pm by TPC prototype

ro—

Pseudo-tracks with 220 layers (same as the actual size of CEPC baseline
detector concept) and dE/dx is about 3.4 = 0.3%
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Pad readout TPC technology — GEMs readout @LCTPC

https:

e TPC prototype have been studied the beam under 1.0T.

GEMs with 100pm LCP insulator
Standard GEM from CERN

e Design idea of the GEM Module:

* Spatial resolution of 0,,<100 um, more stability by the

No frame at modules both sides

broader arcs at top and bottom

Gate GEM

transfer gap

arxiv.org/abs/1801.04499
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by the beam under 1.0T.

Bulk-Micromegas with 128 pm gap

grid on ground potential

* Spatial resolution of ¢,,<100 um

‘/ﬁ v - v
ttps://doi.org/10.1016/j.nima.2019.162798

Resistive Micromegas has been studied
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Pad readout TPC technology — Resistive Micromegas readout @LCTPC
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Cooling system for readout electronics

e Readout electronics will require a cooling system. 2-phase CO2-cooling is a very interesting candidate.
e A fully integrated AFTER-based solution tested on 7 Micromegas modules during a test beam.
e To optimize the cooling performance and the material budget 3D-printing of aluminum is an attractive
possibility for producing the complex structures required.
e A prototype for a full module is validated at LCTPC.
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e Pixelated readout TPC for Z pole run at CEPC

e In the Tera Z conditions, these are typically of several hundred microns
per point to a mm, and even centimeters if one consider the charge
created by the machine background.

e Inthe Tera Z conditions at a high-luminosity circular collider, the
secondary ions back-flowing need to be strongly suppressed, and
corrections have to be dynamically applied using the pixelated readout.

e Some intense R&D program has to be addressed even than simulation.
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Results of the estimation ion charge density in Chamber

* For Higgs run, no problem detector factor for TPC

* For Z pole run

e TPC with IBF*Gain=1 at CEPC-91
— at best, less or similar space-charge as at ALICE

xlp“‘
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Collider Detector Model CEPC v4 CEPC v4
Beamstrahlung pairs CEPC Z-pole(91GeV) CEPC Higgs(240GeV)
BX freq. 1/23 ns 1/680 ns

primary ions/BX 27.37 k 72.36 k

primary ions at any time 5.95%1011 5.32x 1010

average primary pio, mC/m?  2.43 0.22

max (single BX) nC/m?/BX]  1.05x107° 5.4x1076

max (steady state) [nC/m?] 11.4 1.98




Compare to ALICE-TPC environment

« Calculation of TPC radial ion space charge density: z=-200cm , (dz=10cm , dr=6mm)
e dQ=2mrdrdz; piyp, =%
e Each BX~ 1.05e-6 nC/m3/BX , 0.2e-6 nC/m3/BX (compared to uniformly distributed)
« Stable Max~ 1.05e-6 nC/m3/BX x 1/23ns x 50% x n = 11.4 nC/m3 (Only primary ions, n ionization efficiency )

<107 Rho_r_leftdz
1 Entries 222
Mean 735 ALICE TPC upgrade TDR: CERN-LHCC-2013-020
Std Dev 30.57
0.8 max (single BX) max (steady state)
max~1.05e-6 nC/m3/BX ALICE 50k 120 nC/m? with IBF=20

Inner of the readout board ,

06|
- Max ~11.4 nC/m3
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Simulation of the pixelated TPC - ongoing

» Separation power was obtained based on the current reconstruction algorithm as well as the results of the

resolutionSetup the optimaztion simulation framework.
* 1K resolution is better than 3¢ at 20 GeV and 50 cm drift distance.
e The dN/dx has an good potential to improve the resolution.

e TPC detecror module simulated under 2T and T2K gas.

Simulation/Digitization Reconstruction
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Progress on pixel readout electronics

e Pixel readout R&D started and the design and testing of two versions of the chip completed.

 ROIC +Interposer PCB as RDL T
e High metal coverage, 4-side buttable rore
» Low power Energy/Timing measurement ASIC terposer BCB
e ~100 e noise T
e 5 ns drift time resolution
e <100 mW/cm2

o 2 vyersion chip arrived and the tests are onging.

Global
DAL
1 Trigger
5o l “ 14 bit-Timer
-HV 4 bit { from top-level)
—] ——<"— LDAC »
-2 :
T —— ¢ Disc \*\ TOA B Memory
Il - x £
£
- (]
CSA I - n
+ a @ = 5o T | Apcx4
=
+ = A
o !
Leakage Compensation S&Hx4
Rampé&14 bit-Counter
{from top-level )

Huirong Oi 14



TPC R&D toward CEPC Phy.&Det. TDR

e Simulation and experiments studies needed for CEPC TDR.
* MDI region optimized, lower Gain X IBF and reach the same level primary ions(Gain: 2000, IBF: ~0.1%)
e TPC with IBF at Tera-Z with quasi continuous collisions @ CEPC/FCCee
* Apply Micromegas+GEM , mutil-mesh Micromegas
* Nano-material through which ions can be controlled
e Ion backflow R&D with the Grapheme foil — Collaboration: CEA-Saclay, Shandong University

* Low power consumption readout R&D of TPC FEE board based on WASA.
* Tests Low power Energy/Timing chip of the pixel readout chip. — Collaboration: Tsinghua University
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Summary and Conclusion

* In CEPC TPC study group, TPC detector prototype R&D using the pad readout
towards the pixelated readout for the future e+e- colliders.

« TPC as the main tracker detector to satisfy the physics requirements :

* For Higgs run, W and top running, no problem for all TPC readout technologies.
e Central Tracking is entrusted to a pad readout TPC detector.

 For high luminosity (2 X 10%°) Z pole run:
* Pixelated readout TPC is a good option at high luminosity on the circular e+e- collider.
« The gating will not be possible, so we need an ion back flow suppression without gating R&D

(double or triple mesh/mutil-Mesh, graphene membrane...)

e Some intense R&D program has to be addressed.
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Many thanks!
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