Status of Geometry & Silicon Tracking

FU Chengdong IHEP, CAS

CEPC Software and Simulation Meeting February 5, 2024

Outline

Status of geometry implementation
Status of silicon tracking
Preliminary performance of silicon tracking
Summary

Geometry of CEPC Detector Released in CEPCSW

CEPCv4

• CDR baseline

 \checkmark with TPC as main tracker

✓ Coil outside Hcal

CRD (CEPC reference detector)

 \bullet 4th conceptual detector

 \checkmark with silicon tracker as main tracker and DC as PID

✓ Coil inside Hcal

Branches

✓ CRD_o1_v01: silicon pixel detector (SPD) as SET/SOT

 \checkmark CRD_o1_v02: silicon strip detector (SSD) as SET/SOT

✓ CRD_o1_v03: MOST2 vertex vs CRD_o1_v01

✓ CRD_o1_v04: 10mm beam pipe vs CRD_o1_v01

Un-released Geometry

Expandability

- •Sub-detector replacement
- Layouts
 - ✓ layer number
 - ✓ layer postion
- Material structure

Sub-detector Modules

- MDI: Beampipe
- LumiCal: todo
- Vertex
 - VXD04 (ILD-like)
 - SiTrackerStaggeredLadder (MOST2)
- Silicon tracker
 - SIT_SimplePixel, SIT_SimplePlanar
 - SET_SimplePixel, SET_SimplePlanar
 - FTD_SimpleStaggered, SiTrackerSkewRing (support skew angle)
 - TODO: dead region

DC

DriftChamber

TPC

- TPC10: to update according TDR
- Ecal, Hcal & Muon
 - SEcal05 (si-W)
 - CRDEcal (4D crystal bar)
 - RotatedCrystalCalorimeter (stereo crystal)
 - SHcalRpc01 (octahedron), SHcalRpc02 (optional side)
 - SHcalSc04
 - Yoke05
 - RotatedPolyhedraBarrelCalorimeter

Four calorimeter configurations implemented, sensitive type is determined by material option of sensitive layer/bar, and will be reflected in digitization.

TODO:

- improve detail
- update for new designs: endcap idea, etc.

Status of Sub-detector study

MDI

epcsoft

LumiCal

• standalone

• cepcsoft: position optimization

Vertex

- fast/full/beam: layouts position close to frozen, length?
- Silicon tracker
 - fast/full

DC

• CEPCSW

- epcsoft
- CEPCSW: same stage with cepcsoft, easy to modify readout maertial

Ecal/Hcal/Muon

- cepcsoft for old modules: optimization and physical study
- CEPCSW for new modules: reconstruction and optimization

Status of Silicon Tracking

job		propose	code	run	validation	application	optimization
Geometry	Module						
	New module						
	Tracker implement						
Digitization							
Tracking algorithm	Track finding						
	Track fitter						
Tracking tool	Common API						
	Kalman filter						
	Global fit						
Performance	Single particle						
	Multiple particles						
	$H \rightarrow \mu \mu$						
	$\tau \rightarrow 3 \text{prong}$						
	$b\overline{b}H$						
	Non-uniform field						
	Random noise						
	Beam background						
Application	Tracker optimization						
	Beam test						

Digitization

- Gaussian smearing on SimTrackerHit at measurement dimension (u,v)
 - pixel: 2D (u,v)
 - strip: 1D (u,0) or (0, v)
- Fixed spatial resolution
 - VXD

 \checkmark σ_{rphi,z}=4µm(2.8µm), 4µm(6µm), 4µm, 4µm, 4µm, 4µm ● SIT

$$\checkmark \sigma_{rphi} = 7.2 \mu m, \sigma_z = 86 \mu m$$

• SOT/SET

✓ σ_{rphi} =7.2µm, σ_z =86µm ● Endcap tracker

$$\checkmark \sigma_{\rm rphi} = 7.2 \mu {\rm m}, \sigma_{\rm z} = 86 \mu {\rm m}$$

Parameterized spatial resolution

• Riccardo del Burgo's parametrization model

$$\checkmark \sigma_{u,v} = p_0 + p_1 x + p_2 e^{-p_9 x} \cos(p_3 x + p_4) + p_5 e^{-\frac{(x-p_6)^2}{2p_7^2}} + p_8 \sqrt{x}$$

• parameters are relative to pitch size (for CMS PhaseII)

✓ VXD: 25µm×25µm

✓ others: 50µm×200µm

Efficiency in $b\overline{b}H$

Observe particle: has ≥ 6 hits in trackers

Efficiency in $\tau \rightarrow 3$ prong

- ■Observed particles (N): has ≥6 linked tracker hits
 - Has linked track (Nf)
 - $\epsilon = Nf/N$
- Search the close neighbor in the final state particles

Resolution

 $\sigma_{\rm IP}$ =(15µm, 36nm, 2.8mm)

Resolution of p_T

Resolution of d0

Plan

Provides geometry of detector design to study

Standard efficiency estimation

As TDR requirement

Software improvement