



#### Working Plan towards MDI Part of Ref-TDR of CEPC Detector <sub>Haoyu SHI</sub>

2024.2.6



### MDI+LumiCal



- Interference region with Acc.(Discussion when needed)
- Beam Induced Backgrounds
  - Estimation(Simulation) of Impacts and Radiation Environment
  - Software Upgrade
  - Validation and optimization of the Codes
- LumiCal(Led by Suen/Lei, Meeting Tuesday Afternoon, 4pm, first time last week)
  - Detector Design of the LumiCal
    - Detector Technology/Electronics/Readout...
    - Software/Simulation
  - Interference with other detectors/acc components
- Optimization of Interaction Region/MDI
  - Shielding for the detectors/detector hall
  - Working together with accelerator colleagues





- Estimation of Impacts and Radiation Environment(50MW)
  - Three Stage:
    - First Preliminary version: Using existing tool/geometry with beam pipe and inner vtx updated; Focusing on Higgs/Z; with a safety factor of 10 in all results – March
    - Upgrading of software/geometry: Before the end of June(together with CEPCSW plan)
    - Second Preliminary version: Using new tool/geometry; all 4 modes; with a safety factor of 10 in all results – Late July/Early August
    - Optimization of the IR layout/configuration...(need help from all sub-D)
    - Final Ref-TDR version: Using new tool/geometry; all 4 modes; with optimized safety factor -- Late October/Early November
- Offering BG samples for mixing/detector optimization: when needed, further discussion needed.
- Validation of the tool/simulation: Using BII/BIIU this year.





#### • Current Status towards First Pre. Version:

| Background                    | Mode  | Generation   | Tracking     | Noise Estimation | Rad. Da. Esti. | Rad. Env. Esti. |
|-------------------------------|-------|--------------|--------------|------------------|----------------|-----------------|
| Synchrotron Radiation         | Higgs | Partial Done | Patrial Done | To do            | -              | -               |
|                               | Z     | To do        | To do        | To do            | -              | -               |
| Beamstrahlung/Pair Production | Higgs | Done         | -            | Done             | Done           | -               |
|                               | Z     | Doing        | -            | To do            | To do          | -               |
| Beam-Thermal Photon           | Higgs | Done         | Done         | Doing            | Doing          | -               |
|                               | Z     | Done         | Done         | Doing            | Doing          | -               |
| Beam-Gas Bremsstrahlung       | Higgs | Done         | Done         | Doing            | Doing          | -               |
|                               | Z     | Done         | Done         | Doing            | Doing          | -               |
| Beam-Gas Coulomb              | Higgs | Done         | Done         | Doing            | Doing          | -               |
|                               | Z     | Done         | Done         | Doing            | Doing          | -               |
| Radiative Bhabha              | Higgs | -            | -            | -                | -              | -               |
|                               | Z     | -            | -            | -                | -              | -               |
| Touschek                      | Higgs | -            | -            | -                | -              | -               |
|                               | Z     | Doing        | To do        | To do            | To do          | -               |







- Baseline detector schematic ready, remaining tasks
  - Requirement/Goal: 1e-4 precision measurement of integrated lumi; fast meet the requirement from acc.
  - Software Updating:
    - Standalone: Migrate from GEANT3 to GEANT4 with the necessary validations
    - Working together with CEPCSW team to implement the geometry/detector to CEPCSW
  - Simulate the updated beampipe with the electron and photon from Bhabha
  - Finalize the design of the tracker and the EM calorimeter, logically consistent
    - The silicon/diamond tracker and crystal detector of the LumiCal will closely following the central detector
  - Finalize the readout electronics/TDAQ
  - Simulation studies to be finished by September to October 2024
  - Test beam or cosmic ray studies to validate the simulation of the beam pipe interacting with electron/photon



### Optimization



- Mitigation methods for BIB: Collimators/Masks/Shielding
- Optimization for layout of the IR including the detectors(boundary req. if exists)
- Iteration based on simulation and discussion.



## TOC of Ref-TDR



- One whole Chapter(same with CDR): Machine Detector Interface and Luminosity Detectors (Haoyu/Suen/Sha)
  - Introduction & Requirements
  - IR Layout(Haoyu/Sha/Quan/Haijing)
  - Key design/parameters(beampipe, final focusing, etc..)(Haoyu/Sha/....)
  - Detector/IR Backgrounds(Haoyu)
    - Introduction
    - Shielding Design/mitigation methods
    - Estimation
  - Luminosity Measurement System(Suen/Lei/Weiming)
  - Summary & Outlook
  - Ref. List

# Backup





#### • Current Tools:

| Background                    | Generation        | Tracking     | Detector Simu. |  |
|-------------------------------|-------------------|--------------|----------------|--|
| Synchrotron Radiation         | <u>BDSim</u>      | BDSim/Geant4 |                |  |
| Beamstrahlung/Pair Production | Guinea-Pig++      |              |                |  |
| Beam-Thermal Photon           | PyBTH[Ref]        |              | Makka          |  |
| Beam-Gas Bremsstrahlung       | PyBGB[Ref]        | SAD          | <u>Mokka</u>   |  |
| Beam-Gas Coulomb              | BGC in <u>SAD</u> |              |                |  |
| Radiative Bhabha              | BBBREM            |              |                |  |