Theoretical Review on Heavy Flavor Physics

selected topics & mainly on B physics

李新强 华中师范大学

第21届全国重味物理与CP破坏研讨会, 2024/10/26, 衡阳

Outline

□ Introduction

D Purely leptonic decays

11:00-11:30	因子化方法回顾 杨德山(中国科学院大学)				
11:30-12:00	重介子光锥分布振幅最新进展 徐吉(郑州大学)				
15:30-15:50	双混合 CP 破坏 秦溱(华中科技大学)				
15:50-16:10	CPV of Baryon Decays with N π Rescatterings 汪建鹏(兰州大学)				
16:40-17:00	Observable CPV in charmed baryons decays with SU(3) symmetry analysis 邢志鹏(南京师范大学)				
17:00-17:20	Determining heavy meson LCDAs from lattice QCD 张其安(北京航空航天大学)				

□ Lifetime of b hadrons & neutral B-meson mixings

□ Tree-level semi-leptonic decays

□ Rare FCNC decays

□ Hadronic B decays

□ Summary

10:40-11:00	PDF of a Deuteron-like Dibaryon System from Lattice QCD 孙鹏(中科院近物所)
11:00-11:20	Heavy quark mass dependence of heavy meson LCDAs in QCD 赵帅(天津大学)
11:20-11:40	QCD LCDAs of Heavy Mesons from boosted HQET 魏焰冰(北京工业大学)
11:40-12:00	Probing heavy meson LCDAs with heavy quark spin symmetry 曾军(上海交通大学)

9:30-9:50	The contributions of $ ho ightarrow \omega\pi$ in $B ightarrow D\omega\pi$ decays 王文飞(山西大学)					
9:50-10:10	CPV of Λ_b decays in PQCD 韩佳杰(兰州大学)					
10:40-11:00	NLO Weak Annihilation Correction to Rare B → (K,π)l ⁺ l ⁻ Decays 沈月龙(中国海洋大学)					
11:00-11:20	QED corrections to $B_u \rightarrow \tau^- v$ at subleading power 周四红(内蒙古大学)					
11:40-12:00	CPA corresponding to the imaginary parts of the interference terms in cascade decays of heavy hadrons 张振华(南华大学)					
15:10-15:30	Charming Opportunities in CPV 刘佳韦(李政道研究所)					
15:30-15:50	LCDAs of Light Baryon on Lattice 华俊(华南师范大学)					

Effective weak Hamiltonian

 $\square \mathcal{H}_{eff} = \sum_{i} C_{i} \mathcal{O}_{i}$: standard starting point for any theoretical analysis

- > Wilson coefficients C_i : all physics above the typical scale of a process (like $\mu_b \simeq m_b$); perturbatively calculable & NNLL program now complete [Gorbahn, Haisch '04; Misiak, Steinhauser '04]
- Iocal operators O_i: obtained after integrating out heavy d.o.f. [Buras, Buchalla, Lautenbacher '96]

Hadronic matrix elements

 $\Box \langle f | \mathcal{O}_i | \overline{B} \rangle_{\text{QCD,QED}}$: how to reliably and precisely evaluate it? depending on the specific modes

- > Exclusive vs. (semi-)inclusive modes?
- > Hadronic decays $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: depends on spin & parity of $M_{1,2}$ and FSI introduces strong phases, and hence direct CPV

a difficult, multi-scale, QCD & QED problem!

 $\langle M_1 M_2 | \mathcal{O}_{\mathbf{i}} | \overline{B} \rangle = \langle M_1 | \overline{u} \dots b | \overline{B} \rangle \langle M_2 | \overline{d} \dots u | 0 \rangle -$

naïve fact. approach [Bauer, Stech, Wirbel '87] 2024/10/26 李新强

- Combination of dynamical approaches with flavor symmetries [FAT (Li, Lü et al.)...] Theoretical review of heavy flavor physics 4

Example

\Box With $\langle f | \mathcal{O}_i | \overline{B} \rangle_{\text{QCD,QED}}$ at hand, we can then do what we want to do

- ✓ LFU violation in $R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau v_{\tau})}{Br(B \to D^{(*)}Iv_{\tau})}$
- $\checkmark P_{5}'(B^{0} \to K^{*0}\mu^{+}\mu^{-})?$

2024/10/26

 \checkmark deviations between $Br(B^+ \rightarrow K^+ \mu^+ \mu^-)$, $Br(B_s^0 \to \phi \mu^+ \mu^-)$, and $Br(B^+ \to K^+ \nu \bar{\nu})$?

- > Br($B^0 \to \pi^0 \pi^0$) = (0.3 0.9)[(1.55 ± 0.16)] × 10⁻⁶
 - $\blacktriangleright \Delta A_{CP}(\pi K) = A_{CP}(\pi^0 K^-) A_{CP}(\pi^+ K^-) = (11.3 \pm 1.2)\%$
 - □ Main tasks: more precise measurements & theoretical predictions; need collaboration!

Purely leptonic decays

\Box Have simplest hadronic structure; all QCD dynamics encoded in $f_{B_s} = (230.3 \pm 1.3) \text{MeV}$

□ Much progress achieved due to multi-loop techniques, EFTs , & LQCD, ...

Purely leptonic decays

QED correction: power-enhanced & helicity-suppression partially lifted [M. Beneke, C. Bobeth, R. Szafron, 1908.07011]

Purely leptonic decays

QED correction to $B \rightarrow \ell \nu$ **decays** [C. Cornella, M. König, M. Neubert 2212.14430; see talk by 周四红 on 10.27]

- QED effects are well under control for $\mu > m_b$ as well as for $\mu \ll \Lambda_{\text{QCD}}$:
- ▶ all short distance ($\mu > m_b$) QED effects can be included in the **weak effective** Lagrangian

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \, (\bar{u} \, \gamma^{\mu} P_L b) (\bar{\ell} \, \gamma_{\mu} P_L \nu_{\ell}$$

- photons with $E \ll \Lambda_{\text{QCD}}$ cannot resolve the hadron structure and can be computed treating the B as **point-like**.
- Things are more complicated for $\Lambda_{\text{QCD}} < \mu < m_b$: very active research topic.

QED factorization theorems available only for a few processes:

- $B_s \rightarrow \mu^+ \mu^-$ [Beneke, Bobeth, Szafron, 1708.09152,1908.07011]
- $B \rightarrow \pi K, B \rightarrow D\pi$ [Beneke, Böer et al 2008.10615,2107.03819]
- $B_s \rightarrow \mu^+ \mu^- \gamma$ [Beneke, Bobeth, Wang 2008.12494]

taken from talks by C. Cornella

New features with QED effect:

- "universal" decay constants become process-dependent;
 sensitive to 2- and 3-particle
 - LCDAs of B meson

$\square \ \textbf{Factorization formula: QCD} \rightarrow \textbf{SCET}_{I} \rightarrow \textbf{SCET}_{II}$

spectator (A-type) spectator (B-type)

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\rm QCD})^{1/2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- soft (& soft-collinear*) function: HQET B meson matrix elements

$$\mathcal{A}_{B\to\ell\bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \\ \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b x) J_B(m_b \omega x) S_B(\omega) \right] \quad \boldsymbol{\omega} = n \cdot p_\mu$$

Hard and jet function share a variable x = collinear momentum fraction carried by the spectator

►
$$H_B \sim x^{-\epsilon}, J_B \sim x^{-1-\epsilon}$$

⇒ $H_B \otimes J_B \sim \int_0^1 dx \, x^{-1}$ has an **endpoint divergence** in $x = 0!$

 This cannot be removed with RG techniques, but is systematically treatable with refactorization-based subtraction (RBS) scheme

> [Liu, Neubert 2019; Liu, Mecaj, Neubert, Wang 2020; Beneke et al. 2022; Liu, Neubert, Schnubel, Wang 2022]

Lifetime of b-hadrons two-guark \Box Lifetime based on HQE in $1/m_b$: [J. Albrecht, contribution F. Bernlochner, A. Lenz, A. Rusov, 2402.04224] 000 000 $\Gamma(\mathcal{B}) = rac{1}{2m_{\mathcal{B}}} \sum_X \int\limits_{\infty} (2\pi)^4 \delta^{(4)}(p_{\mathcal{B}}-p_X) \; |\langle X(p_X)|\mathcal{H}_{ ext{eff}}|\mathcal{B}(p_{\mathcal{B}}) angle|^2$ \mathcal{O}_3 $\Gamma(\mathcal{B}) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right]$ $=\frac{1}{2m_{\mathcal{B}}}\operatorname{Im}\left\langle \mathcal{B}(p_{\mathcal{B}})\right|i\int d^{4}x \ T\left\{ \mathcal{H}_{\mathrm{eff}}(x),\mathcal{H}_{\mathrm{eff}}(0)\right\}\left|\mathcal{B}(p_{\mathcal{B}})\right\rangle$ Optical Theorem □ status of SD coefficients: $\langle Q_5 \rangle_{B_d}$ 1993/962013-2023 Semi-leptonic Non-leptonic 2017/18LO NLO N²LO N³LO LO NLO N²LO $\langle Q_5 \rangle_{B_a}$ 2011□ status of \checkmark 2023 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\langle Q_5 \rangle_{\mathcal{B}}$ \checkmark **** 1994/2022 \checkmark \checkmark $\langle Q_6 \rangle_{B_d}$ hadronic 2013-2023 \checkmark \checkmark \checkmark \mathbb{C} 1994/2022 $\langle Q_6 \rangle_{B_s}$ \checkmark matrix 2011 \checkmark $\langle Q_6 \rangle_{\mathcal{B}}$ 2023elements: \checkmark \checkmark \checkmark (\mathbb{C}) \checkmark $\langle \tilde{Q}_6 \rangle_{B_d}$ 2017 \mathbb{C} $\langle \tilde{Q}_6 \rangle_{B_s}$ 2022[Lenz, Piscopo, AR, 2004.09527], [Mannel, Moreno, Pivovarov, 2004.09485] $\langle \tilde{Q}_6 \rangle_{\Lambda_h}$ 1996• [Mannel, Moreno, Pivovarov, 2304.08964 (for $m_c = 0$)] [Fael, Schönwald, Steinhauser, 2011.13654] 2023 $\langle \tilde{Q}_6 \rangle_{\mathcal{B}}$ ✓ - partly known 🙁 - in progress or planned [Karlsruhe, Siegen] 🗸 - known $\langle \tilde{Q}_7 \rangle$

2024/10/26

Гз

Гъ

 Γ_6

 Γ_7

Γ₈

 $\tilde{\Gamma}_{6}$

Γ̈́z

four-guark

contribution

QCD sum rule [234, 235]

Lattice QCD [242, 243]

EOM relation [31, 245]

EOM relation [31, 245]

Sum rule [244]

EOM relation [34]

HQET sum rule [246]

HQET sum rule [247]

QCD sum rule [248]

NRCQM [34]

VIA

Fit of inclusive data [236–241]

Spectroscopy relations [244]

Spectroscopy relations [34]

Fit of inclusive data [236–241]

Lifetime of b-hadrons

Exp. data & SM predictions: [J. Albrecht, F. Bernlochner, A. Lenz, A. Rusov, 2402.04224]

➢ no indication of sizeable quark-hadron duality violation

2024/10/26

[H. Y. Cheng, C. W. Liu, 2305.00665]

Neutral B-meson mixings

□ For B_q^0 meson: flavor eigenstates \neq mass eigenstates \Rightarrow mix with each other via box diagrams

$\Box \text{ Time evolution of a} \\ \text{decaying particle} \quad i\frac{d}{dt} \binom{|B(t)\rangle}{|\bar{B}(t)\rangle} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \binom{|B(t)\rangle}{|\bar{B}(t)\rangle}$

□ Three observables for B mixings

- Mass difference: $\Delta M := M_H M_L \approx 2|M_{12}|$ (off-shell) $|M_{12}|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta \Gamma := \Gamma_L \Gamma_H \approx 2|\Gamma_{12}| \cos \phi$ (on-shell) $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!

Flavor specific/semi-leptonic CP asymmetries: e.g. $B_q \rightarrow X l \nu$ (semi-leptonic)

 $a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi$

- \checkmark M₁₂: dispersive (off-shell) part of the box diagram
- ✓ Γ_{12} : absorptive (on-shell) part of the box diagram

 $\checkmark \phi = arg(-M12/\Gamma 12)$: relative phase between them

"short-distance" (=virtual particle exchange)

"long-distance" (=real particle exchange)

$$M_{12} = rac{G_F^2}{12\pi^2}ig(V_{tq}^*V_{tb}ig)^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

 $\dagger ext{ 1-loop calculation } S_0ig(x_t=m_t^2/M_W^2ig)$

† 2-loop perturbative QCD corrections $\hat{\eta}_B$

$$\dagger \, rac{3}{3} B_{B_q} f_{B_q}^2 M_{B_q} = \Big\langle \overline{B}_q ig| (ar{b} q)_{V-A} (ar{b} q)_{V-A} ig| B_q \Big
angle$$

- $egin{aligned} \Gamma_{12} &= igg(rac{\Lambda}{m_b} igg)^3 \Big(\Gamma_3^{(0)} + rac{lpha_s}{4\pi} \Gamma_3^{(1)} + \ldots \Big) & egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} + igg(rac{\Lambda}{m_b} igg)^4 \Big(\Gamma_4^{(0)} + \ldots \Big) + igg(rac{\Lambda}{m_b} igg)^5 \Big(\Gamma_5^{(0)} + \ldots igg) + \ldots \end{aligned}$
- deepening our understanding of QCD
- indirect searches for BSM effects

Neutral B-meson mixings

□ Status of theo. predictions & exp. data [J. Albrecht, F. Bernlochner, A. Lenz, A. Rusov, 2402.04224]

NP constraints from neutral B mixings

- □ Exp. observables are related to the
 - **SM and NP parameters:**

□ Latest fit results by UTfit group:

$$egin{aligned} \Delta M_d^{ ext{exp}} &= C_{B_d} \Delta M_d^{ ext{SM}}\,, & ext{ sin } 2eta^{ ext{exp}} &= ext{sin}ig(2eta^{ ext{SM}}+2\phi_{B_d}ig)\ \Delta M_s^{ ext{exp}} &= C_{B_s} \Delta M_s^{ ext{SM}}\,, & ext{ } \phi_s^{ ext{exp}} &=ig(eta_s^{ ext{SM}}-\phi_{B_s}ig) \end{aligned}$$

consistency between data & SM of B mixing observables puts stringent constraint on NP

NP constraints from neutral B mixings

Very high scales probed by neutral meson mixings:

$$egin{aligned} \mathcal{H}^{\Delta B=2}_{ ext{eff}} &= \sum_{i=1}^5 C_i \mathscr{O}^{bq}_i + \sum_{i=1}^3 ilde{C}_i ilde{\mathcal{O}}^{bq}_i & C_i(\Lambda) = rac{F_i L_i}{\Lambda^2} & ext{with } F_i \sim L_i \sim 1 \ & \mathcal{O}_1 &= \left(ar{b}^lpha \gamma_\mu L q^lpha
ight) \left(ar{b}^eta \gamma_\mu L q^eta
ight), & \mathcal{O}_2 &= \left(ar{b}^lpha L q^lpha
ight) \left(ar{b}^eta L q^eta
ight), & \mathcal{O}_3 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta L q^lpha
ight) \ & \mathcal{O}_4 &= \left(ar{b}^lpha L q^lpha
ight) \left(ar{b}^eta R q^eta
ight), & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \left(ar{b}^eta R q^lpha
ight) \ & \mathcal{O}_5 &= \left(ar{b}^lpha L q^eta
ight) \ & \mathcal{O}_5 &= \left(ar{b}$$

[Y. Liao, X. D. Ma and H. L. Wang, 2409.10305]

□ Flavor universal NP scenario: assuming NP couples

predominantly to 3rd-generation quarks and leptons, and can be easily realized in NP models with a U(2)⁵ symmetry

$$\implies \kappa_d = \kappa_s = \kappa, \qquad \sigma_d = \sigma_s = \sigma$$

$$M_{12}^{q} = M_{12}^{q,\text{SM}}(1 + \kappa_q e^{i\sigma_q}) \qquad \Delta m_q = \Delta m_q^{\text{SM}} |1 + \kappa_q e^{i\sigma_q}|,$$

$$\phi_q = \phi_q^{\text{SM}} + \phi_q^{\text{NP}} = \phi_q^{\text{SM}} + \arg(1 + \kappa_q e^{i\sigma_q}).$$

these $\Delta F = 2$ processes probe up to tens of TeV, far beyond the sensitivity of other dim-8 operators to collider searches!

□ B-mesogenesis mechanism: [G. Elor, M. Escudero, and A. Nelson, 1810.00880; 2101.02706]

李新强 Theoretical review of heavy flavor physics

Sum rule for $b \rightarrow c$ sector

Sum rule for R(D), $R(D^*)$ & $R(\Lambda_c) = Br(\Lambda_b \to \Lambda_c \tau \nu_{\tau})/Br(\Lambda_b \to \Lambda_c \ell \nu_{\ell})$:

$$|1 + C_{V_L}|$$

Re[(1 + $C_{V_L}^{q\tau})C_{S_L}^{q\tau*}$]

 $|1\rangle ca\tau|^2$

$$rac{R_H}{R_H^{
m SM}} = b rac{R_P}{R_P^{
m SM}} + c rac{R_V}{R_V^{
m SMM}} + \delta_H(C_i)$$

 $\implies b + c = 1 \& a_P^{VS}b + a_V^{VS}c = a_H^{VS_1}, \text{ so that } \delta_H(C_i) \text{ small}$

model-indep. & holds for any tau-philic NP!

□ State-of-the-art prediction: [Duan, Iguro, Li, Watanabe, Yang, to appear soon]

Sum rule for $b \rightarrow c$ sector

 $\square \text{ Sum rule for } R(D), R(D^*) \& R(X_c) = Br(B \to X_c \tau \nu_{\tau})/Br(B \to X_c \ell \nu_{\ell}):$

$$\frac{R_{X_c}}{R_{X_c}^{\rm SM}} \simeq 0.288 \, \frac{R_D}{R_D^{\rm SM}} + 0.712 \, \frac{R_{D^*}}{R_{D^*}^{\rm SM}} + \delta_{X_c}$$

 $\delta_{X_c} \simeq 0.015 \left(|C_{S_L}^{c\tau}|^2 + |C_{S_R}^{c\tau}|^2 \right) - 0.003 \operatorname{Re} \left(C_{S_L}^{c\tau} C_{S_R}^{c\tau*} \right) - 1.655 |C_T^{c\tau}|^2$ $+ \operatorname{Re} \left[\left(1 + C_{V_L}^{c\tau} \right) \left\{ 0.192 C_{V_R}^{c\tau*} + 0.896 C_T^{c\tau*} \right\} \right] - 3.405 \operatorname{Re} \left(C_{V_R}^{c\tau} C_T^{c\tau*} \right)$ $+ 0.043 \operatorname{Re} \left[\left(1 + C_{V_L}^{c\tau} \right) C_{S_R}^{c\tau*} + C_{S_L}^{c\tau} C_{V_R}^{c\tau*} \right]$

 $R_{X_c}^{SR} \simeq 0.247 \pm 0.008 |_{R_X^{SM,exp}} \text{ vs } R_{X_c}^{exp} = 0.228 \pm 0.039 \text{ [Belle II, 2311.07248]}$

 $\succ \Gamma(B \to X_c \ell \nu_\ell) = \sum \Gamma(B \to D \ell \nu_\ell) + \Gamma(B \to D^* \ell \nu_\ell) + \Gamma(B \to D^{**} \ell \nu_\ell) \text{, saturate already inclusive rate?}$

> the sum rule relation provides another complementary test of the dynamics behind the decays

 $\square \text{ Sum rule for } R(D^*) \& R(J/\psi) = Br(B \to J/\psi \tau \nu_{\tau})/Br(B \to J/\psi \ell \nu_{\ell}):$

 $\frac{R_{J/\psi}}{R_{J/\psi}^{SM}} \simeq \frac{R_{D^*}}{R_{D^*}^{SM}} \implies \frac{R_{J/\psi}}{R_{J/\psi}^{SM}} - \frac{R_{D^*}}{R_{D^*}^{SM}} = 1.2 \pm 0.7$

> satisfied within the 2 σ error bars; would be significant once $R_{J/\psi}$ measurement improved

Sum rule for $b \rightarrow u$ sector

Sum rule for $R(\pi)$, $R(\rho)$ & R(p) in $b \rightarrow u$:

$$\frac{R_p}{R_p^{\rm SM}} = (0.284 \pm 0.037) \, \frac{R_\pi}{R_\pi^{\rm SM}} + (0.716 \mp 0.037) \, \frac{R_\rho}{R_\rho^{\rm SM}} + \delta_p$$

the sum rule for $b \rightarrow u$ more (less) sensitive to the scalar (tensor) NP compared to $b \rightarrow c$

\Box Correlation among $R(\pi)$, $R(\rho)$ & R(p):

$$\begin{split} \delta_p &= (-0.090 \pm 0.059) \left(|C_{S_L}^{u\tau}|^2 + |C_{S_R}^{u\tau}|^2 \right) + (-0.185 \pm 0.038) \operatorname{Re} \left(C_{S_L}^{u\tau} C_{S_R}^{u\tau*} \right) \\ &+ (-0.913 \pm 2.403) |C_T^{u\tau}|^2 + (-0.203 \pm 0.538) \operatorname{Re} \left(C_{V_R}^{u\tau} C_T^{u\tau*} \right) \\ &+ \operatorname{Re} \left[\left(1 + C_{V_L}^{u\tau} \right) \left\{ (0.169 \pm 0.158) C_{V_R}^{u\tau*} + (0.370 \pm 0.632) C_T^{u\tau*} \right\} \right] \\ &+ (-0.079 \pm 0.056) \operatorname{Re} \left[\left(1 + C_{V_L}^{u\tau} \right) C_{S_R}^{u\tau*} + C_{S_L}^{u\tau} C_{V_R}^{u\tau*} \right] \,. \end{split}$$

	Lattice		LCSR		Lattice + LCSR
	SM	Tensor	SM	Tensor	SM + Tensor
$B \to \pi$	Refs. [98–100]	Ref. [101]	Refs. [90,	103–105]	Ref. [106]
$B \to \rho$	no data	no data	Refs. [77,	90, 107]	BY. Cui et al., 2212.11624
$\Lambda_b \to p$	Ref. [80]	no data	Ref. [108]	no data	_

Rare FCNC decays

\Box Why $b \rightarrow s\ell^+\ell^-$ processes:

- occur firstly at 1-loop; suppressed by loop factor
- ▶ proportional to $|V_{tb}V_{ts}^*|$; $Br(b \rightarrow s \ell \ell) \sim 10^{-6}$
- sensitive to various NP

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i=7,9,10} \frac{C_i \mathcal{O}_i}{C_i} + \dots$$

Rare FCNC decays

□ Test with the exp. data:

□ Further detailed studies required:

 $\mathcal{H}_{\lambda}(z) = rac{1}{\phi(z)\mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda,k} \, p_k(z) rac{ extsf{dispersive}}{ extsf{Gubernari, van Dyk, Virto '20}}$

- The description of non-local form factors far more involved than expected
 Analyticity properties fully understood, constrained also by theory & experiment
 uncertainties still large, but controlled by dispersive bounds & systematically improvable
- Novel soft-function introduced [Qin, Shen, Wang, Wang, 2023; Huang, Ji, Shen, Wang, Wang, Zhao, 2023]

 $\langle 0|(\bar{q}_{s}S_{n})(\tau_{1}n)S_{n}^{\dagger}S_{\bar{n}}(0)S_{\bar{n}}^{\dagger}g_{s}G_{\mu\nu}S_{\bar{n}}(\tau_{2}\bar{n})\bar{n}^{\nu}n\cdot\gamma\gamma_{\perp}^{\mu}\gamma_{5}S_{\bar{n}}^{\dagger}h_{\nu}(0)|\bar{B}_{\nu}\rangle$

$$=2F_{\rm B}(\mu)m_B\int_{-\infty}^{\infty}d\omega_1d\omega_2\ {\rm e}^{-i(\omega_1\tau_1+\omega_2\tau_2)}\Phi_G(\omega_1,\omega_2,\mu)$$

 $B_a^0 \rightarrow D_a^{(*)-}L^+$ class-I decays

 \Box At the quark-level, these decays mediated by $b \rightarrow c \overline{u} d(s)$

all four flavors different from each other, no penguin operators & no penguin topologies!

For class-I decays: QCDF formula much simpler; only the form-factor term at leading power [Beneke, Buchalla, Neubert, Sachrajda '99-'03; Bauer, Pirjol, Stewart '01]

$$\langle D_q^{(*)+}L^- | \mathcal{Q}_i | \bar{B}_q^0 \rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2)$$
$$\times \int_0^1 du \, T_{ij}(u) \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

Hard kernel T: both NLO and NNLO results known;

[Beneke, Buchalla, Neubert, Sachrajda '01; Huber, Kränkl, Li '16]

$$egin{aligned} \mathcal{Q}_2 &= ar{d} \gamma_\mu (1-\gamma_5) u ~~ar{c} \gamma^\mu (1-\gamma_5) b \ \mathcal{Q}_1 &= ar{d} \gamma_\mu (1-\gamma_5) oldsymbol{T}^{\mathcal{A}} u ~~ar{c} \gamma^\mu (1-\gamma_5) oldsymbol{T}^{\mathcal{A}} b \end{aligned}$$

i) only color-allowed tree topology T = a₁
ii) spectator & annihilation power-suppressed
iii) annihilation absent in B⁰_{d(s)} → D⁻_{d(s)}K(π)⁺ etc.
iv) they are theoretically simpler and cleaner
these decays used to test factorization theorems

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

Non-leptonic/semi-leptonic ratios

Non-leptonic/semi-leptonic ratios : [Bjorken '89; Neubert, Stech '97; Beneke, Buchalla, Neubert, Sachrajda '01]

Exp.

 0.74 ± 0.06

 0.80 ± 0.06

 2.23 ± 0.37

 0.62 ± 0.05

 0.60 ± 0.14

 1.38 ± 0.25

$$R_{(s)L}^{(*)} \equiv \frac{\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}L^{-})}{d\Gamma(\bar{B}_{(s)}^{0} \to D_{(s)}^{(*)+}\ell^{-}\bar{\nu}_{\ell})/dq^{2} \mid_{q^{2}=m_{L}^{2}}} = 6\pi^{2} |V_{uq}|^{2} f_{L}^{2} |a_{1}(D_{(s)}^{(*)+}L^{-})|^{2} X_{L}^{(*)}$$

NNLO

 $1.10^{+0.03}_{-0.03}$

 $1.10^{+0.03}_{-0.03}$

 $3.02_{-0.18}^{+0.17}$

 $0.85\substack{+0.01\\-0.02}$

 $0.79^{+0.01}_{-0.02}$

 $1.53^{+0.10}_{-0.10}$

.........

free from the uncertainties from $V_{cb} \& B_{d,s} \to D_{d,s}^{(*)}$ form factors

Updated predictions vs data: [Huber, Kränkl, Li '16; Cai, Deng, Li, Yang '21]

NLO

 $1.07^{+0.04}_{-0.04}$

 $1.06^{+0.04}_{-0.04}$

 $2.94^{+0.19}_{-0.19}$

 $0.83\substack{+0.03 \\ -0.03}$

 $0.76^{+0.03}_{-0.03}$

 $1.50^{+0.11}_{-0.11}$

 $\overline{B}_{s} \rightarrow D_{s}^{+}\pi^{-} \qquad R_{s\pi} \qquad 1.01 \qquad 1.07_{-0.04}^{+0.04} \qquad 1.10_{-0.03}^{+0.03} \qquad 0.72 \pm 0.08$ $R_{sK} \qquad 0.78 \qquad 0.83_{-0.03}^{+0.03} \qquad 0.85_{-0.02}^{+0.01} \qquad 0.46 \pm 0.06$ $|a_{1}(\overline{B} \rightarrow D^{*+}\pi^{-})| = 0.884 \pm 0.004 \pm 0.003 \pm 0.016 [1.071_{-0.016}^{+0.020}]$

.........

15% lower than SM $|a_1(\overline{B} \rightarrow D^{*+}K^-)| = 0.913 \pm 0.019 \pm 0.008 \pm 0.013 [1.069^{+0.020}_{-0.016}]$

 $\overline{B} \rightarrow D^+ K^-$

 $R_{(s)L}^{(*)}$

 R_{π}

 R^*_{π}

 R_{o}

 R_K

 R_K^*

 R_{K^*}

LO

1.01

1.00

2.77

0.78

0.72

1.41

Deviation (σ)

5.4

4.5

1.9

4.4

1.3

0.6

......

4.4

6.3

Large power corrections?

□ Sources of sub-leading power corrections: [Beneke,

Buchalla, Neubert, Sachrajda '01; Bordone, Gubernari, Huber, Jung, van Dyk '20]

non-factorizable spectator interactions

annihilation topologies

 $\left| \left\langle D_q^{(*)+} L^- \right| \mathcal{Q}_i \left| \bar{B}_q^0 \right\rangle = \sum F_j^{\bar{B}_q \to D_q^{(*)}} (M_L^2) \right|$ $\times \int^{1} du \, T_{ij}(u) \phi_L(u) + \mathcal{O}$

- > all are estimated to be power-suppressed, and no chiralityenhancement due to $(V - A) \otimes (V - A)$ structure
- very difficult to explain why the measured values of |a₁(h)|
 several σ smaller than the SM predictions
 - must consider sub-leading power corrections more carefully

□ Non-fact. soft-gluon contributions in LCSR with

B-meson LCDA: [Maria Laura Piscopo, Aleksey V. Rusov, '23]

non-leading higher Fock-state contributions Appendent

 $egin{aligned} & ext{Br}(ar{B}^0_s o D^+_s \pi^-) = \left(2.15^{+2.14}_{-1.35}
ight) \left[2.98 \pm 0.14
ight] imes 10^{-3} \ & ext{Br}(ar{B}^0 o D^+ K^-) = \left(2.04^{+2.39}_{-1.20}
ight) \left[2.05 \pm 0.08
ight] imes 10^{-4} \end{aligned}$

Sol

$B \rightarrow PP$ based on SU(3)_F symmetry

□ Analysis based on SU(3)_F symmetry:

- $\bullet~$ 3 light quarks, u,d,s, much lighter than b quark
- $u, d, s = SU(3)_F$ triplet; State $\rightarrow |irrep, Y, I, I_3\rangle$
- $|u\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\rangle, \ |d\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, -\frac{1}{2}\rangle, \ |s\rangle = |\mathbf{3}, -\frac{2}{3}, 0, 0\rangle$
- $\left| \bar{d} \right\rangle = \left| \mathbf{3}^*, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2} \right\rangle$; Y = hypercharge, I = Isospin
- ${f 3} imes {f 3}^*~=~{f 1}+{f 8}$: These are the 3 pions, 4 kaons, η,η'
- $|\pi^+\rangle = |u\bar{d}\rangle = |\mathbf{8}, 0, 1, 1\rangle$ Similarly other pions and kaons are also octets
- Apply to two-body final states

 $|PP\rangle_{\text{sym}} = (\mathbf{8} \times \mathbf{8})_{\text{sym}} = \mathbf{1} + \mathbf{8} + \mathbf{27} = 36$

Effective weak Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\lambda_u^{(s)} (C_1 Q_1^{(u)} + C_2 Q_2^{(u)}) + \lambda_c^{(s)} (C_1 Q_1^{(c)} + C_2 Q_2^{(c)}) - \lambda_t^{(s)} \sum_{i=3}^{10} C_i Q_i \right]$$

$$|\pi^{+}\pi^{-}\rangle = \frac{1}{2} |\mathbf{1}\rangle_{0,0,0} - \sqrt{\frac{2}{5}} |\mathbf{8}\rangle_{0,0,0} - \frac{1}{2\sqrt{15}} |\mathbf{27}\rangle_{0,0,0} + \frac{1}{\sqrt{3}} |\mathbf{27}\rangle_{2,0,0}$$

$$\bar{B}^{0} = \left| \bar{d}b \right\rangle = \left| \bar{\mathbf{3}} \right\rangle_{\frac{1}{2}, \frac{1}{2}, -\frac{1}{3}}, \quad \bar{B}_{s} = \left| \bar{s}b \right\rangle = \left| \bar{\mathbf{3}} \right\rangle_{0, 0, \frac{2}{3}}, \quad B^{-} = -\left| \bar{u}b \right\rangle = \left| \bar{\mathbf{3}} \right\rangle_{\frac{1}{2}, -\frac{1}{2}, -\frac{1}{3}}$$

	$\overline{15}_{I=1}$	$\overline{15}_{I=0}$	$6_{I=1}$	$\overline{3}_{I=0}^{(a)}$	$\overline{3}_{I=0}^{(s)}$	$\overline{15}_{I=3/2}$	$\overline{15}_{I=1/2}$	$6_{I=1/2}$	$\overline{3}_{I=1/2}^{(a)}$	$\overline{3}_{I=1/2}^{(s)}$
$\overline{d}\overline{d}d$						$\sqrt{1/3}$	$-\sqrt{1/6}$			$\sqrt{1/2}$
$\overline{d}\overline{u}u$						$-\sqrt{1/3}$	$-\sqrt{1/24}$	-1/2	1/2	$\sqrt{1/8}$
$\overline{d}\overline{s}d$	1/2	$-\sqrt{1/8}$	1/2	-1/2	$\sqrt{1/8}$					

$$\langle PP|\mathcal{H}_{ ext{eff}}|B
angle = \langle \mathbf{1}\oplus\mathbf{8}\oplus\mathbf{27}|\mathbf{3}^{*}\oplus\mathbf{6}\oplus\mathbf{15}^{*}|\mathbf{3}
angle = \sum_{i}C_{i}\langle \mathbf{1},\mathbf{8},\mathbf{27}|\mathbf{3}^{*},\mathbf{6},\mathbf{15}^{*}|\mathbf{3}
angle_{i}$$

$B \rightarrow PP$ based on SU(3) flavor symmetry

Physical amplitudes:

$$\langle PP|\mathcal{H}_{ ext{eff}}|B
angle = \langle \mathbf{1}\oplus\mathbf{8}\oplus\mathbf{27}|\mathbf{3}^{*}\oplus\mathbf{6}\oplus\mathbf{15}^{*}|\mathbf{3}
angle = \sum_{i}C_{i}\langle \mathbf{1},\mathbf{8},\mathbf{27}|\mathbf{3}^{*},\mathbf{6},\mathbf{15}^{*}|\mathbf{3}
angle_{i}$$

 \triangleright B \rightarrow PP decay amplitudes expressed in terms of SU(3)_F RMEs & C-G coefficients, and then fit to all the data

- \blacktriangleright Key point: no any theoretical assumptions on RMEs \Rightarrow completely rigorous on group-theoretical side
- > Indep. RMEs: $V_{ub}V_{us}^* \rightarrow 5$, $V_{tb}V_{ts}^* \rightarrow 2$; \longrightarrow 7 indep. RMEs = 13 real parameters

\Box Enough data for the fit with only 7 RMEs in exact SU(3)_F

 $\Delta S = 0$ decays:

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A _{CP}	S _{CP}
$B^+ ightarrow K^+ \overline{K}^0$	$B^+ \rightarrow K^+ \overline{K}^0$ 1.31±0.14		
$B^+ ightarrow \pi^+ \pi^0$	$5.59{\pm}0.31$	$0.008 {\pm} 0.035$	
$B^0 ightarrow K^0 \overline{K}^0$	$1.21{\pm}0.16$	0.06±0.26	$-1.08{\pm}0.49$
$B^0 ightarrow \pi^+\pi^-$	$5.15{\pm}0.19$	$0.311{\pm}~0.030$	-0.666 ± 0.029
$B^0 ightarrow \pi^0 \pi^0$	$1.55\pm$ 0.16	$0.30{\pm}0.20$	
$B^0 ightarrow K^+ K^-$	$0.080{\pm}0.015$??	??
$B_s^0 o \pi^+ K^-$	$5.90\substack{+0.87\-0.76}$	$0.225{\pm}0.012$	
$B_s^0 o \pi^0 \overline{K}^0$??	??	??

 $\Delta S = 1$ decays:

Decay	$\mathcal{B}_{CP}~(imes 10^{-6})$	A _{CP}	S _{CP}
$B^+ ightarrow \pi^+ K^0$	23.52±0.72	-0.016 ± 0.015	
$B^+ \rightarrow \pi^0 K^+$	$13.20 {\pm} 0.46$	$0.029{\pm}0.012$	
$B^0 \rightarrow \pi^- K^+$	19.46±0.46	-0.0836 ± 0.0032	
$B^0 ightarrow \pi^0 K^0$	$10.06 {\pm} 0.43$	$-0.01{\pm}0.10$	$0.57{\pm}0.17$
$B_s^0 \to K^+ K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	0.14±0.03
$B_s^0 ightarrow K^0 \overline{K}^0$	17.4 ± 3.1	??	??
$B_s^0 ightarrow \pi^+\pi^-$	$0.72^{+0.11}_{-0.10}$??	??
$B_s^0 o \pi^0 \pi^0$	2.8±2.8		

$B \rightarrow PP$ based on SU(3) flavor symmetry

□ State-of-the-art SU(3)_F fit [Huber, Li, Malami, Tetlalmatzi-Xolocotzi, w.i.p; D. London et al., 2311.18011]

- ✓ $\left| \frac{\tilde{c}}{\tilde{r}} \right| = 1.65$ (ΔS=0), 0.85 (ΔS = 1), 1.23 (SU(3)_F) vs 0.13 ≤ $\left| \frac{\tilde{c}}{\tilde{r}} \right| = 0.23 ≤ 0.43$ based on QCDF
- ✓ for combined $\Delta S = 0 \& \Delta S = 1$ decays: very poor fit, with 3.6 σ disagreement with the SU(3)_F limit
- ✓ a 1000% SU(3)_F-breaking effect required, much large than naive expectation of $f_K/f_{\pi} 1 \sim 20\%$

□ More precise measurements, especially of the missing observables (e.g. $B_s^0 \to K^0 \overline{K}^0$ and $B_s^0 \to \pi^0 \overline{K}^0$) may help to figure out true dynamical mechanism behind charmless B decays

Summary

□ With exp. and theor. progress, we are now entering a precision era for flavor physics

□ More precise exp. measurements, theor. predictions, & LQCD inputs needed

0.6

many opportunities to explore SM & BSM physics in heavy flavor physics

back-up

QED corrections in other processes

QED corrections to semi-leptonic & hadronic B decays [M. Beneke et al, 2008.10615; 107.03819]

 $\mathcal{A}(\bar{B} \to DL) = A_{BD}^{QCD}\left(\frac{\hat{\mathcal{F}}^{BD}}{F_{0}^{BD}}\right) \sum_{i} \frac{C_{i}}{C_{sl}} \int_{0}^{1} du \, \frac{H_{i}(u,z)}{H_{sl}} \frac{\Phi_{L}(u)}{Z_{\ell}} \equiv A_{BD}^{QCD}\left(\frac{\hat{\mathcal{F}}^{BD}}{F_{0}^{BD}}\right) a_{1}(DL)$

• $\hat{\mathcal{F}}^{BD}/F_0^{BD} = 1 + \mathcal{O}(\alpha_{em})$: corrections to the form factor unknown \Rightarrow ratios Γ_h/Γ_{sl} The corrections on the effective coefficient $a_1(DL)$ can be written as

 $a_1(DL) = a_1^{\text{QCD}}(DL) + \delta a_1^{\text{WC}}(DL) + \delta a_1^{\text{K}}(DL) + \delta a_1^{\text{L}}(DL)$

□ Why QED corrections? [P. Boer and T. Feldmann, 2312.12885]

• $a_1^{\text{QCD}}(DK) = 1.061^{+0.017}_{-0.016} + 0.038^{+0.025}_{-0.014}i$ NNLO [Huber, Kränkl, Li 1606.02888] • $\delta a_1^{\text{WC}}(DL) = -0.0039$ process-independent [Huber, Lunghi, Misiak, Wyler 0512066] • $\delta a_1^{\text{K}}(DK) = -0.0045 - 0.0054i$ process-dependent, see next slide [this work] • $\delta a_1^{\text{L}}(D\pi) = \delta a_1^{\text{L}}(DK) = +0.0035^*$ [Beneke, Böer, Toelstede, Vos 2108.05589]

QED corrections turn out to be 1 order of magnitude smaller than NNLO QCD uncertainties

- > confronted with precision exp. data, QED effects need included in a systematic manner
- > some virtual QED radiations lead to qualitatively new effect: logarithmic dependence on m_{ℓ} violates LFU, new isospin violation sources from different quark charges Q_q
- > virtual photons with $\Lambda_{QCD} < \mu < m_b$ resolve the inner hadronic structure, and generally not included in typical Monte Carlo implementations like PHOTOS
- QED factorization theorems for many processes still unknown; we need a consistent treatment of QED effects between theoretical & exp. analyses

Rare FCNC B decays

 \Box Another interesting FCNC decays: $B \rightarrow K^{(*)} \nu \overline{\nu}$

 > there are no photon-penguin diagrams
 > theoretically cleaner than b → sℓℓ decays due to absence of LD cc̄-loop contributions

□ State-of-the-art SM prediction:

• Effective Hamiltonian in the SM:

see e.g. [Buras et al. '14]

Including NLO QCD and two-loop EW contributions

[Buchala et al. '93, '99], [Misiak et al. '99], [Brod et al. '10] - Z':

 $X_t = 1.462(17)(2)$

 $|V_{tb}V_{ts}^*| = |V_{cb}| \left(1 + \mathcal{O}(\lambda^2)\right)$

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{\text{b} \to s \nu \nu} &= \frac{4 G_F \lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_i C_L^{\text{SM}} \left(\bar{s}_L \gamma_\mu b_L \right) (\bar{\nu}_{Li} \gamma^\mu \nu_{Li}) + \text{h.c.} , \\ \lambda_t &= V_{tb} V_{ts}^* \end{aligned}$$

• Short-distance contributions known to good precision:

$$C_L^{\rm SM} = -X_t / \sin^2 \theta_W$$
$$= -6.32(7)$$

$$D = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} (2)$$

$$K^{(*)}|ar{s}_L\gamma^\mu b_L|B
angle = \sum_a K^\mu_a\, \mathcal{F}_a(q)$$

2024/10/26

 $\mathcal{B}(B \to K\nu\bar{\nu})^{\mathrm{SM}}/|\lambda_t|^2 = \begin{cases} (1.33 \pm 0.04)_{K_S} \times 10^{-3} \\ (2.87 \pm 0.10)_{K^+} \times 10^{-3} \end{cases}$

$\simeq 3\%$ uncertainty

$$\mathcal{B}(B \to K^* \nu \bar{\nu})^{\text{SM}} / |\lambda_t|^2 = \begin{cases} (5.9 \pm 0.8)_{K^{*0}} \times 10^{-3} \\ (6.4 \pm 0.9)_{K^{*+}} \times 10^{-3} \end{cases}$$

$$\simeq 15\%$$
 uncertainty

$$\begin{array}{c} b_{R} & b_{R} & b_{R} \\ s_{R} & 2^{i_{\infty}}(\underline{I},\underline{I},0) \\ s_{R} & z^{i_{\infty}}(\underline{I},\underline{I},0) \\ s_{R} & z^{i_{\infty}}(\underline{I},0) \\ s_{R} &$$

 $\mathcal{L}_{Z'} \supset g_{ij}^{\psi} \, (\bar{\psi}_i \gamma^{\mu} \psi_j) Z'_{\mu}$

 $\mathcal{L}_{\widetilde{R}_2} \supset y_{ij}^R \left(\bar{d}_{Ri} \widetilde{R}_2 i \tau_2 L_j \right) + \text{h.c.}$

Rare FCNC B decays

D Belle-II first evidence of $B^+ \to K^+ \nu \overline{\nu}$:

exp. data $\simeq 2.7\sigma$ above the SM prediction

□ NP signal: new heavy mediator in loop or

new light invisible particle in final state?

[X. G. He, X. D. Ma, M. A. Schmidt, G. Valencia and R. R. Volkas, 2403.12485;

B. F. Hou, X. Q. Li, M. Shen, Y. D. Yang and X. B. Yuan, 2402.19208; [see talk by 袁兴博 on 10.28] F. Z. Chen, Q. Y. Wen and F. R. Xu, 2401.11552] 2024/10/26 李毅

Evidence for $B^+ \to K^+ \nu \bar{\nu}$ decays

Belle-II Collaboration • I. Adachi et al. (Nov 24, 2023)

Published in: Phys.Rev.D 109 (2024) 11, 112006 • e-Print: 2311.14647 [hep-ex]

 \Box pdfO DOI \Box cite \Box claim \Box reference search \odot 83 citations

$$\mathcal{L}_{\text{eff}}^{\mathbf{b} \to s \nu \nu} = \frac{4G_F \lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_{ij} \left[C_L^{\nu_i \nu_j} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) + \frac{C_R^{\nu_i \nu_j}}{(\bar{s}_R \gamma_\mu b_R)} \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) \right]$$

- the deviation can easily accommodated by an EFT with operators coupled to 3-generation leptons
- ✓ verify the excess via $Br(B^0 \to K_s \nu \bar{\nu}), Br(B \to K^* \nu \bar{\nu}) \& F_L^{K^*}$ @ Belle II

Analysis in SMEFT with flavor symmetry

\Box Combined analysis of $b \rightarrow u$ & $b \rightarrow c$ sectors in SMEFT:

 $\sum_{i} c_{i}^{(6)} \mathcal{Q}_{i}^{(6)} \Big|_{b \to q l \nu} = c_{H_{\ell}}^{ij} \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H \right) \left(\bar{L}^{i} \gamma^{\mu} \tau^{I} L^{j} \right) + c_{H_{q}}^{mn} \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H \right) \left(\bar{Q}^{m} \gamma^{\mu} \tau^{I} Q^{n} \right)$ $+ c_{V}^{mnij} \left(\bar{Q}^{m} \gamma^{\mu} \tau^{I} Q^{n} \right) \left(\bar{L}^{i} \gamma_{\mu} \tau^{I} L^{j} \right) + \left\{ c_{H_{\bar{q}}}^{mn} \left(\tilde{H}^{\dagger} i D_{\mu} H \right) \left(\bar{U}^{m} \gamma^{\mu} D^{n} \right) \right\}$

 $+ c_{S_d}^{mnij} \left(\bar{L}^i E^j \right) \left(\bar{D}^m Q^n \right) + c_{S_u}^{mnij} \left(\bar{L}^{a,i} E^j \right) \epsilon_{ab} \left(\bar{Q}^{b,m} U^n \right)$

 $+ c_T^{mnij} \left(\bar{L}^{a,i} \sigma_{\mu\nu} E^j \right) \epsilon_{ab} \left(\bar{Q}^{b,m} \sigma^{\mu\nu} U^n \right) + \text{h.c.} \right\}$

SMEFT: $\succ U(2)^5$ flavor symmetry: $U(2)^5 = U(2)_Q \otimes U(2)_U \otimes U(2)_D \otimes U(2)_L \otimes U(2)_E$ $c_V^{\prime 0} (\Gamma_L^{\dagger})^{in} (\Gamma_L)^{mj} (\bar{Q}^m \gamma^{\mu} \tau^I Q^n) (\bar{L}^i \gamma_{\mu} \tau^I L^j),$ $c_{S_d}^{\prime 0} (\Gamma_L^{\dagger})^{in} (\Gamma_R)^{mj} (\bar{L}^i E^j) (\bar{D}^m Q^n),$ $c_{S_u}^{\prime 0} (\Gamma_L^{\dagger})^{im} (\Gamma_R)^{nj} (\bar{L}^{a,i} E^j) \epsilon_{ab} (\bar{Q}^{b,m} U^n),$ $c_T^{\prime 0} (\Gamma_L^{\dagger})^{im} (\Gamma_R)^{nj} (\bar{L}^{a,i} \sigma_{\mu\nu} E^j) \epsilon_{ab} (\bar{Q}^{b,m} \sigma^{\mu\nu} U^n).$

□ LEFT WC at EW scale:

$$\begin{split} C_{V_L}^{q\tau} &= -\frac{v^2}{\Lambda^2} c_V^{\prime 0} \left[1 + \lambda_Q^s \left(\frac{V_{qs}}{V_{qb}} + \frac{V_{qd}}{V_{qb}} \frac{V_{td}^*}{V_{ts}^*} \right) \right] \\ &= -\frac{v^2}{\Lambda^2} c_V^{\prime 0} \left(1 - \lambda_Q^s \frac{V_{tb}^*}{V_{ts}^*} \right), \\ C_{S_R}^{q\tau} &= -\frac{v^2}{2\Lambda^2} c_{S_u}^{\prime 0} \left(1 - \lambda_Q^s \frac{V_{tb}^*}{V_{ts}^*} \right), \end{split}$$

 $C_{S_L}^{u\tau} = C_T^{u\tau} \simeq 0, \qquad C_{S_L}^{c\tau} = C_T^{c\tau} \propto m_c/m_t,$

➢ left-handed vector & right-handed scalar NP have same sizes in b → u & b → c

2024/10/26

D Projections in $R(D) - R(\pi)$ & $R(D^*) - R(\rho)$ planes:

李新强 Theoretical review of heavy flavor physics