

Recent progress on heavy meson LCDA

报告人: 徐吉

2024.10.26 @ 南华大学

第二十一届全国重味物理与CP破坏研讨会

1

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

Heavy Flavor Physics

The charm quark was predicted by Glashow, Iliopoulos and Maiani in 1970.

Flavor physics plays a very important role in particle physics

Heavy Flavor Physics

- The charm quark was predicted by Glashow, Iliopoulos and Maiani in 1970.
- The bottom quark was first predicted in 1973 by Kobayashi and Maskawa to explain CP violation.

2008

Flavor physics plays a very important role in particle physics

Heavy Flavor Physics

- The charm quark was predicted by Glashow, Iliopoulos and Maiani in 1970.
- 1976

2008

The bottom quark was first predicted in 1973 by Kobayashi and Maskawa to explain CP violation.

> Heavy Flavor Physics: *b*, *c*, τ .

Flavor physics plays a very important role in particle physics

Heavy meson LCDA

Heavy meson LCDA plays a very important role in Flavor physics

Heavy Quark Effective Theory

≻ The Lagrangian of HQET.

$$\mathcal{L}_{\text{eff}} = \bar{h}_v i v \cdot D h_v + \frac{1}{2m_Q} \sum_{n=0}^{\infty} \bar{h}_v i \not\!\!D_\perp \left(-\frac{i v \cdot D}{2m_Q} \right)^n i \not\!\!D_\perp h_v \,.$$

Figure 5: Philosophy of the heavy-quark effective theory.

Neubert, Subnucl.Ser 34, 98-165 (1997)

HQET is constructed to describe heavy flavor physics

Heavy Quark Effective Theory

> Using HQET, observables can be written schematically as series.

LCDA is a crucial nonperturbative quantity

Why heavy meson LCDA important?

 $[B \rightarrow \pi \ell \nu$ Khodjamirian, Mannel, Offen, YMW, PRD 83, 094031 (2011); ZHL, ZGS, YW, NZ, NPB, 900, 198-211 (2015)] $[B \rightarrow D \ell \nu$ HPQCD Collaboration, PRD 92, 054510 (2015)]

 $[B_s \rightarrow PP, PV, VV, Ali, Kramer, YL, CDL, YLS, et.al., PRD, 76, 074018 (2007)]$

LCDA is pivotal in determining V_{ub} and V_{cb}

Why heavy meson LCDA important?

$$\left\langle K_{a}^{*}\ell^{+}\ell^{-}\right|H_{eff}|B\right\rangle = T_{a}^{I}\left(q^{2}\right)\zeta_{a}\left(q^{2}\right) + \sum_{\pm}\int_{0}^{\infty} \frac{d\omega}{\omega}\phi_{\pm}^{B}(\omega)\int_{0}^{1}du\phi_{K^{*}}^{a}(u)T_{a,\pm}^{II}\left(\omega,u,q^{2}\right).$$

B-meson LCDA

 $[B \rightarrow K^+ \ell^+ \ell^- \text{Ali, Kramer, GHZ, EPJC 47, 625 (2006)}]$ $[B \rightarrow K^* \ell^+ \ell^- \text{QC, XQL, YDY, JHEP 04, 052 (2010)}]$

Without precise knowledge on LCDAs, it is hard to probe NP

Why heavy meson LCDA important?

[QCD factorization: Beneke, Buchalla, Neubert, Sachrajda, PRL 83, 1914 (1999); YDY, XQL, Phys.Rev.D 73 (2006) 114027] [For PQCD, see: Keum, Li, Sanda, PRD 63, 054008 (2001); ZJX, CDL, et.al., PRD 73, 074002 (2006)] [For TMDF, see: JPM, QW, JHEP, 01, 067 (2006)]

LCDA is an indispensable part of factorization theory

Definition on heavy meson LCDA

> The light-ray HQET matrix element

[Grozin, Neubert, PRD 55, 272-290 (1997)]

$$\left\langle 0 \left| \bar{q}_{\beta}(z)[z,0] h_{v\alpha}(0) \right| \bar{B}(v) \right\rangle = -\frac{i\tilde{f}_B m_B}{4} \left[\frac{1+\psi}{2} \left\{ 2\tilde{\varphi}_B^+(t,\mu) + \frac{\tilde{\varphi}_B^-(t,\mu) - \tilde{\varphi}_B^+(t,\mu)}{t} \not{\varphi} \right\} \gamma_5 \right]_{\alpha\beta} .$$
Leading twist Sub-leading twist

We assume that $z^2 = 0$, define $t = v \cdot z$ and the path-ordered exponential

$$[z,0] = \operatorname{P} \exp\left(ig_s \int_{z_2}^{z_1} dz^{\mu} A_{\mu}(z)\right) \,.$$

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

Equation of motion. [Kawamura, Kodaira, CFQ, Tanaka, PLB 523, 111 (2001)]

$$\tilde{\phi}'_{-}(t) - \frac{1}{t} \left(\tilde{\phi}_{+}(t) - \tilde{\phi}_{-}(t) \right)$$
$$= 2t \int_{0}^{1} duu \left(\tilde{\Psi}_{A}(t, u) - \tilde{\Psi}_{V}(t, u) \right) .$$

Equation of motion. [Kawamura, Kodaira, CFQ, Tanaka, PLB 523, 111 (2001)]

► B-LCDA with contribution from 3-particle Fock States. [TH, CFQ, XGW, PRD 73, 074004 (2006)]

$$\Psi_{+}(\omega, b) = \frac{\omega}{\omega_{0}^{2}} \exp\left(-\frac{\omega}{\omega_{0}}\right) \left(\Gamma[\delta] J_{\delta-1}[\kappa]\right) \\ + (1-\delta)\Gamma[2-\delta] J_{1-\delta}[\kappa]\right) \left(\frac{\kappa}{2}\right)^{1-\delta} .$$

Equation of motion. [Kawamura, Kodaira, CFQ, Tanaka, PLB 523, 111 (2001)]

► B-LCDA with contribution from 3-particle Fock States. [TH, CFQ, XGW, PRD 73, 074004 (2006)]

Evolution equations of ϕ_+^B . [Lange, Neubert, PRL 91, 102001 (2003); Bell, Feldmann, JHEP 04, 061 (2008)]

$$\frac{d}{d\ln\mu}\phi_B^+(\omega,\mu) = -\frac{\alpha_s C_F}{4\pi} \int_0^\infty d\omega' \gamma_+^{(1)}(\omega,\omega',\mu) \phi_B^+(\omega',\mu) + \mathcal{O}\left(\alpha_s^2\right) \,.$$

With
$$\gamma_+^{(1)}(\omega,\omega',\mu) = \left(\Gamma_{\rm cusp}^{(1)}\,\ln\frac{\mu}{\omega} - 2\right) \delta\left(\omega - \omega'\right) - \Gamma_{\rm cusp}^{(1)}\,\omega\left[\frac{\theta\left(\omega'-\omega\right)}{\omega'\left(\omega'-\omega\right)} + \frac{\theta\left(\omega-\omega'\right)}{\omega\left(\omega-\omega'\right)}\right]_+ \,.$$

- Equation of motion. [Kawamura, Kodaira, CFQ, Tanaka, PLB 523, 111 (2001)]
- ► B-LCDA with contribution from 3-particle Fock States. [TH, CFQ, XGW, PRD 73, 074004 (2006)]
- Evolution equations of ϕ_+^B . [Lange, Neubert, PRL 91, 102001 (2003); Bell, Feldmann, JHEP 04, 061 (2008)]
- ► RG equations of $\phi_B^+(\omega,\mu)$ at two-loops. [Braun, YJ, Manashov, PRD 100, 1, 014023 (2019); ZLL, Neubert, JHEP 06, 060 (2020)]

$$\begin{pmatrix} \mu \frac{\partial}{\partial \mu} + \beta(a) \frac{\partial}{\partial a} + \Gamma_{\text{cusp}}(a) \ln\left(\tilde{\mu}e^{\gamma_E}s\right) + \gamma_{\eta}(a) \end{pmatrix} \eta_+(s,\mu)$$
$$= 4C_F a^2 \int_0^1 du \frac{\bar{u}}{u} h(u) \eta_+(\bar{u}s,\mu) \,.$$

Solution of evolution equations. [Bell, Feldmann, YMW and Yip, JHEP 11, 191 (2013); Braun, Manashov, PLB 731, 316-319 (2014)]

$$\phi_B^+(\omega,\mu) = e^V \int_0^\infty \frac{d\omega'}{\omega'} \sqrt{\frac{\omega}{\omega'}} J_1\left(2\sqrt{\frac{\omega}{\omega'}}\right) \left(\frac{\mu_0}{\hat{\omega}'}\right)^{-g} \rho_B^+(\omega',\mu_0)$$

- Solution of evolution equations. [Bell, Feldmann, YMW and Yip, JHEP 11, 191 (2013); Braun, Manashov, PLB 731, 316-319 (2014)]
- Factorization theorem connecting the LCDA in QCD and HQET. [Ishaq, YJ, XNX, DSY, PRL 125, 13, 132001 (2020); Beneke, Finauri, Vos, YBW, JHEP 09, 066 (2023)]

$$\Phi^{\text{QCD}}(x,\mu_Q) = \int_0^\infty d\omega Z(x,\omega,m_b;\mu_Q,\mu_H) \Phi^{\text{HQET}}_+(\omega,\mu_H)$$

- Solution of evolution equations. [Bell, Feldmann, YMW and Yip, JHEP 11, 191 (2013); Braun, Manashov, PLB 731, 316-319 (2014)]
- Factorization theorem connecting the LCDA in QCD and HQET. [Ishaq, YJ, XNX, DSY, PRL 125, 13, 132001 (2020); Beneke, Finauri, Vos, YBW, JHEP 09, 066 (2023)]
- \geq Perturbative constraint for large ω . [Lee, Neubert, PRD 72, 094028 (2005)]

$$\phi_{+}^{B}(\omega,\mu) = \frac{C_{F}\alpha_{s}}{\pi\omega} \left[\left(\frac{1}{2} - \ln\frac{\omega}{\mu} \right) + \frac{4\bar{\Lambda}}{3\omega} \left(2 - \ln\frac{\omega}{\mu} \right) + \dots \right]$$

But...

> Compare with several phenomenological models.

There are considerable differences between various models.

But...

 \triangleright Recent studies have utilized these models to calculate the form factors for *B* → *K*^{*} and *B* → *π*.

[JG, CDL, YLS, YMW, YBW, PRD 101,7, 074035 (2020); BYC, YKH, YLS, CW, YMW, JHEP 03, 014 (2023)]

$$\mathcal{V}_{B\to K^*}(0) = 0.359^{+0.141}_{-0.085} \Big|_{\lambda_B} \Big|_{0.019} \Big|_{\sigma_1} \Big|_{\sigma_1 - 0.062} \Big|_{\mu} \\ + 0.010_{-0.004} \Big|_{M^2 - 0.017} \Big|_{s_0} \Big|_{\sigma_1 - 0.079} \Big|_{\varphi_{\pm}(\omega)},$$

$$f_{B\to\pi}^{+}(0) = 0.122 \times \left[1 \pm 0.07 \Big|_{S_0^{\pi}} \pm 0.11 \Big|_{\Lambda_q} \\ \pm 0.02 \Big|_{\lambda_E^2/\lambda_H^2} \stackrel{+0.05}{_{-0.06}} \Big|_{M^2} \pm 0.05 \Big|_{2\lambda_E^2+\lambda_H^2} \\ \stackrel{+0.06}{_{-0.10}} \Big|_{\mu_h} \pm 0.04 \Big|_{\mu} \stackrel{+1.36}{_{-0.56}} \Big|_{\lambda_B} \stackrel{+0.25}{_{-0.43}} \Big|_{\sigma_1,\sigma_2} \right].$$

Uncertainties from heavy meson LCDAs are dominant

Difficulties in first-principle determinations

The LCDAs are defined on the light-cone. [Grozin, Neubert, PRD 55, 272-290 (1997)]

They cannot be directly simulated on the lattice

Difficulties in first-principle determinations

- The LCDAs are defined on the light-cone. [Grozin, Neubert, PRD 55, 272-290 (1997)]
- Non-negative moments $\int dk \, k^n \varphi_B^+(k)$ for n = 0, 1, 2 ... are not related to matrix elements of local operators.

[Braun, Ivanov, Korchemsky, PRD 69, 034014 (2004)]

$$\left[\bar{q}(tn)\not[tn,0]\Gamma h_v(0)\right]_R \neq \sum_{p=0}^{\infty} \frac{t^p}{p!} \left[\bar{q}(0)(\overleftarrow{D}\cdot n)^p h_v(0)\right]_R$$

Cannot get φ_B^+ by their moments

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

$$\langle H(p_H)|\,\bar{h}_v(0)\not\!\!\!/_+\gamma_5\,[0,tn_+]\,q_s\,(tn_+)\,|0\rangle = -i\tilde{f}_H m_H n_+ \cdot v \int_0^\infty d\omega e^{i\omega tn_+ \cdot v}\varphi_+(\omega;\mu)\,.$$

Cusp divergence:

✓ $n^2 \neq 0$, still heavy quark field h_v

$$\langle H(p_H)|\,\bar{h}_v(0)\not\!\!/_+\gamma_5\,[0,tn_+]\,q_s\,(tn_+)\,|0\rangle = -i\tilde{f}_H m_H n_+ \cdot v \int_0^\infty d\omega e^{i\omega tn_+ \cdot v}\varphi_+(\omega;\mu)\,.$$

Cusp divergence:

- ✓ $n^2 \neq 0$, still heavy quark field h_v
- ✓ $n^2 \neq 0$, and No h_v : QCD heavy quark

Light-cone can be accessed by simulating correlation functions with a large but finite P^z. [XDJ, PRL 110 (2013)] HQET can be accessed by simulating correlation functions with a large but finite m₀. [Isgur, Wise, PLB 232, 113-117 (1989)]

- > Can we utilize the heavy meson quasi-DA in HQET to obtain LCDA in HQET ?
- Our first attempts.
 [WW, YMW, JX, SZ, PRD 102, 011502 (2020)]

LCDA in HQET

- > Can we utilize the heavy meson quasi-DA in HQET to obtain LCDA in HQET ?
- Our first attempts.
 [WW, YMW, JX, SZ, PRD 102, 011502 (2020)]

> Can we utilize the heavy meson quasi-DA in HQET to obtain LCDA in HQET ?

Our first attempts.
 [WW, YMW, JX, SZ, PRD 102, 011502 (2020)]
 [JX, XRZ, PRD 106, 114019 (2022)]
 [JX, XRZ, SZ, PRD 106, L011503 (2022)]

[SMH, WW, JX, SZ, PRD 109, 034001 (2024)]

Quasi-DA in HQET

LCDA in HQET

> Can we utilize the heavy meson quasi-DA in HQET to obtain LCDA in HQET ?

Our first attempts.
 [WW, YMW, JX, SZ, PRD 102, 011502 (2020)]
 [JX, XRZ, PRD 106, 114019 (2022)]

[JX, XRZ, SZ, PRD 106, L011503 (2022)] [SMH, WW, JX, SZ, PRD 109, 034001 (2024)]

Quasi-DA in HQET

LCDA in HQET

• Difficult to realize the boosted HQET field on lattice QCD.

The second road

> Two-step factorization to access heavy meson LCDA.

The second road

> Two-step factorization to access heavy meson LCDA.

\Rightarrow Hierarchy $\Lambda_{\rm QCD} \ll m_H \ll P_z$:

A big challenge for lattice simulation but still calculable on the lattice

The second road

> Two-step factorization to access heavy meson LCDA.

Determining heavy meson LCDAs from lattice QCD

QCD LCDAs of heavy mesons from boosted HQET

Final results for HQET LCDAs

> Compare with several phenomenological models

The first step towards heavy meson LCDAs

First inverse moment (IM)

$$\lambda_B^{-1}(\mu) \equiv \int_{-\infty}^{\infty} d\omega \frac{\phi_B^+(\omega,\mu)}{\omega} \, .$$

 \checkmark The IM is a crucial quantity in LCSR and QCD factorization theorems in heavy flavor physics.

 \checkmark We determine the IM by employing a model-independent parametrization formula.

μ		$\lambda_B ~({ m GeV})$	$\sigma_B^{(1)}$	
$1 \mathrm{GeV}$	N = 1	0.389(35)	1.63(8)	[e-Print: 2403.17492]
1GeV	Ref. [31]	> 0.24		[PRD 98, 112016 (2018)]
	Ref. [18]	0.383(153)		[JHEP 10, 043 (2020)]
	Ref. [7]	0.48(11)	1.6(2)	[PRD 72, 094082 (2005)]
	Ref. [15]	0.46(11)	1.4(4)	[PRD 69, 034014 (2004)]
	Ref. [1]	0.35(15)		[PRD 55, 272 (1997)]
	Ref. [21]	$0.343\substack{+0.064\\-0.079}$		[PRD 101, 7, 074035 (2020)]
	Ref. [73]	0.338(68)		[PLB 848, 138345 (2024)]

HQET and heavy meson LCDA

Progress on heavy meson LCDA

Accessing heavy meson LCDA

2448 citations

Summary

> Two-step effective theories to calculate the heavy meson LCDA in HQET.

 \succ CLQCD ensembles (0.05 fm) to simulate heavy meson quai-DAs.

> The first (preliminary) results for LCDAs are consistent with models.

Power corrections to quasi-distribution amplitudes of a heavy meson

Chao Han,¹ Wei Wang,^{1,2,*} Jia-Lu Zhang,^{1,†} and Jian-Hui Zhang^{3,‡} ¹INPAC, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ²Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, China ³School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China

[CH, WW, JLZ, JHZ, e-Print: 2408.13486] Report: Power corrections to quasi-DA of a heavy meson

Leading Power Accuracy in Lattice Calculations of Parton Distributions

Rui Zhang,^{1,*} Jack Holligan,^{2,†} Xiangdong Ji,^{1,‡} and Yushan Su^{1,3,§}

¹Department of Physics, University of Maryland, College Park, MD 20742, USA ²Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI, 48824, USA ³Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

[RZ, Holligan, XDJ, YSS, PLB, 844, 138081 (2023)]

52

- > Two-loop calculation;
- $> \Lambda/m_Q$ corrections;

.

.

- > Other theoretical approaches;
- Need support of computational resources;
- > Need support of new minds;

