Charm CP violation at Belle and Belle II experiments

lilongke@mail.ustc.edu.cn

李龙

(湖南师范大学)

第二十一届全国重味物理与 CP 破坏研讨会 2024年10月26日于衡阳

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{l} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary 00

Outline

1 Charm sample at Belle and Belle II 2 CPV in $D^0 \rightarrow K^0_S K^0_S$ 3 CPV in $D^+_{(s)} \rightarrow K^0_S K^- \pi^+ \pi^+$ 4 CPV in decays of charmed baryons 5 Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

Charm sample ●00000	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{l} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary
Outline				

Charm sample at Belle and Belle II CPV in D⁰ → K⁰_SK⁰_S CPV in D⁺_(s) → K⁰_SK⁻π⁺π⁺ CPV in decays of charmed baryons Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{l} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary
	t Dalla and Dalla II			

Charm production at Belle and Belle II

- At Belle (II), e^+e^- mainly collide at 10.58 GeV to make Y(4S) resonance decaying into $B\bar{B}$ in 96% of the time.
- Meanwhile, continuum processes $e^+e^- o q\overline{q}~(q=u,~d,~s,~c)$ have large cross sections.
- Two ways to produce the charm sample: $e^+e^- \rightarrow c\bar{c}$ ($\sigma = 1.3$ nb), and $B \rightarrow$ charm decays.

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \textbf{OOOO} \end{array}$	CPV in $D \rightarrow PPPP$ 00000000	CPV in charmed baryon	Summary
Luminosity at Belle	and Belle II			

Integrated luminosity of B factories

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨヨ のの⊙

First wave: charm lifetimes based on the early data set PRL 127, 211801 (2021): PRL 131, 171803 (2023):

PRD 107, L031103 (2023); PRL 130, 071802 (2023).

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{c} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary
Comparison of avai	lable charm camples			

Comparison o	f availa	ble charm	samples
--------------	----------	-----------	---------

Experiment	Machine	С.М.	Luminosity(fb^{-1})	N _{prod}	Efficiency	Characters
₿€SⅢ	$\frac{BEPC-II}{(e^+e^-)}$	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	20 7.3 4.5	$D^{0,+:} 10^8 \ D_s^{+:} 5 imes 10^6 \ \Lambda_c^{+:} 0.8 imes 10^6 \ \star \hat{\kappa}$	~ 10-30%	 extremely clean environment quantum coherence no boost, no time-dept analysis
\mathcal{B}	${f SuperKEKB}\ (e^+e^-)$	10.58 GeV	500 (→ 50000)	$egin{array}{lll} D^0\colon 10^9 \ (o 10^{11}) \ D^+_{(s)}\colon 10^8 \ (o 10^{10}) \end{array}$		 bigh-efficiency detection of neutrals good trigger efficiency
	KEKB (e ⁺ e ⁻)	10.58 GeV	1000	$\frac{\Lambda_c^+: 10^7 (\to 10^9)}{D^{0,+}, D_s^+: 10^9}$ $\frac{\Lambda_c^+: 10^8}{\Lambda_c^+: 10^8}$	$\mathcal{O}(1\text{-}10\%)$	 time-dependent analysis smaller cross-section than LHCb
BELLE				★★☆	**	
LHCb	LHC (<i>pp</i>)	7+8 TeV 13 TeV	$1+26+9(\rightarrow 23 \rightarrow 50)$	$5\times 10^{12} \\ 10^{13}$	$\mathcal{O}(0.1\%)$	© very large production cross-section © large boost, excellent time resolution © more charm sources
				****	*	edicated trigger required

Here uses $\sigma(D^0 \overline{D}^0 @ 3.77 \text{ GeV}) = 3.61 \text{ nb}, \sigma(D^+ D^- @ 3.77 \text{ GeV}) = 2.88 \text{ nb}, \sigma(D_s^* D_s @ 4.17 \text{ GeV}) = 0.967 \text{ nb}; \sigma(cc@ 10.58 \text{ GeV}) = 1.3 \text{ nb} \text{ where each } cc \text{ event averagely has } 1.1/0.6/0.3 \ D^0/D^+/D_s^+ yields; \sigma(D^0 @ CDF) = 13.3 \ \mu\text{, and } \sigma(D^0 @ LHCb) = 1661 \ \mu\text{, mainly from } Int. J. Mod. Phys. A$ **29**(2014)24,14300518.

- BESIII, Belle II, and LHCb experiments have their advantages for charm studies.
- Today I report the recent charm CPV results from Belle II.

Charm sample 0000● CPV in $D \rightarrow PP$

CPV in $D \rightarrow PPPP$ 00000000

Why CPV and Charm CPV Special?

- CPV is essential for elucidating the matter-antimatter asymmetry in the universe.
- Three necessary "Sakharov conditions" are:
 1) Baryon number violation; 2) C and CPV; 3) Interactions out of thermal equilibrium.
- The sole origin of CPV in Standard Model arising from the single complex phase of CKM matrix, is insufficient to account for the observed matter-antimatter asymmetry.
 ⇒ we need to search for new CPV sources beyond SM (a lasting hot topic).
- Charm CPV effect is very small ($\mathcal{O}(10^{-3})$ or smaller ^{*ab*}). New Physics may enhance it ^{*cd*}.
- In 2019, *CP* violation in *D* decays was found at LHCb ^e: $\Delta A_{CP}(D^0 \rightarrow K^+K^-, \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$ (5.3 σ). Recently LHCb report the first evidence for direct CPV in a specific *D* decay ^f: $A_{\pi\pi}^{dr} = (2.32 \pm 0.61) \times 10^{-3}$. \Rightarrow to understand this CPV, study more channels and improve the precision on the existing measurements.
- CPV has been observed in all the open-flavored meson sector, but not yet established in the baryon sector. Baryogenesis, the process by which the baryon-antibaryon asymmetry of the universe developed, is directly related to baryon CPV ^g.
 ⇒ CPV search in charmed baryon is one of main targets of charm physics at Belle II.

^aH.-n. Li, C.-D. Lu, and F.-S. Yu, PRD 86, 036012 (2012) ^bH.-V. Cheng and C.-W. Chiang, PRD 104, 073003 (2021) ^cA. Dery and Y. Nir, JHEP 12, 104 (2019) ^cM. Saur and F.-S. Yu, Sci. Bull. 65, 1428 (2020) ^eLHCb, PRL 122, 211803 (2019) ^fLHCb, PRL 131, 091802 (2023) ^gM.E. Shaposhnikov, NPB 287, 757 (1987)

< <p>I > < <p>I

Charm CPV at Belle and Belle I

HFCPV 2024, 10月26日于衡阳 5/18

4 2 5 4 2 5

ELE DOG

Charm sample	$\begin{array}{c} CPV \text{ in } D \to PP \\ \bullet \bullet \bullet \bullet \bullet \bullet \end{array}$	CPV in $D \rightarrow PPPP$ 00000000	CPV in charmed baryon	Summary
Outling				

Charm sample at Belle and Belle II
CPV in D⁰ → K⁰_SK⁰_S
CPV in D⁺_(s) → K⁰_SK⁻π⁺π⁺
CPV in decays of charmed baryons
Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- The time-integrated *CP* asymmetry $\mathcal{A}_{CP}(D^0 \to K^0_S K^0_S) = \frac{\Gamma(D^0 \to K^0_S K^0_S) \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0 K^0) + \Gamma(\overline{D}^0 \to K^0 K^0)}.$
- It may be enhanced to be an observable level (the 1% level) within the Standard Model, due to the interference of $c \rightarrow us\bar{s}$ and $c \rightarrow ud\bar{d}$ amplitudes. [PRD 99, 113001 (2019), PRD 86, 014023 (2012), PRD 92, 054036 (2015)]

• World average: $A_{CP}(D^0 \rightarrow K_s^0 K_s^0) = (-1.9 \pm 1.0)\%$ is dominated by

- Belle (921 fb⁻¹): $\mathcal{A}_{CP}^{K_S^0 K_S^0} = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$ using $D^0 \to K_S^0 \pi^0$ as control mode [PRL 119, 171801 (2017)] LHCb (6 fb⁻¹): $\mathcal{A}_{CP}^{K_S^0 K_S^0} = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ using $D^0 \to K^+ K^-$ as control mode [PRD 104, L031102 (2021)]
- $\mathcal{A}_{CP}(D^0 \to K^+K^-)$: recently improved by LHCb, uncertainty < 0.1% [PRL 131, 091802 (2023)]

E DQC

Charm sample	CPV in $D \rightarrow PP$	CPV in $D \rightarrow PPPP$	CPV in charmed baryon	Summary
	0000			

Time-integrated *CP* asymmetry in $D^0 \rightarrow K^0_s K^0_s$

• Measure $\mathcal{A}_{CP}(D^0 \to K^0_s K^0_s)$, using $D^0 \to K^+ K^-$ as control mode, with $D^{*+} \to D^0 \pi^+_s$ sample at B+B2 (1.4 ab⁻¹). $A_{\rm raw}(D^0 \to f) = \frac{N(D^0) - N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)} = A_{\rm FB}^{D^{*+}} + A_{CP}^{D^0 \to f} + A_{\varepsilon}^{\pi_s}$

• $\mathcal{A}_{CP}^{K_5^0 K_5^0} = (\mathcal{A}_{raw}^{K_5^0 K_5^0} - \mathcal{A}_{raw}^{K^+ K^-}) + \mathcal{A}_{CP}^{K^+ K^-}$ assuming that the nuisance asymmetries are identical between two decays, or that they can be made so by weighting the control sample.

•
$$A_{CP}^{D^0 \to K^+ K^-} = A_{CP}^{\text{dir}}(D^0 \to K^+ K^-) + \Delta Y = (6.7 \pm 5.4) \times 10^{-4}$$
 [PRL 131, 091802 (2023), PRD 104, 072010 (2021)]

- $A_{CP}^{dir}(D^0 \to K^+K^-) = (7.7 \pm 5.7) \times 10^{-4}$: direct *CP* asymmetry [PRL 131, 091802 (2023)] $\Delta Y = (-1.0 \pm 1.1) \times 10^{-4}$: CPV in mixing and in the interference between mixing and decay [PRD 104, 072010 (2021)]
- Unbinned fit to $(m(D^0\pi_s), S_{\min})$ of D^0 and \overline{D}^0 candidates for $D^0 \to K^0_S K^0_S$ decays.
 - Flight significance variable $S_{\min} = \log(\min(L_i/\sigma_i))$: separate the peaking background $D^0 \to K_c^0 \pi^+ \pi^-$.

李龙科,湖南师大

HFCPV 2024, 10月26日于衡阳 8/18

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{l} CPV \text{ in } D \to PPPP \\ \bullet $	CPV in charmed baryon	Summary

Outline

Charm sample at Belle and Belle II
CPV in D⁰ → K⁰_SK⁰_S
CPV in D⁺_(s) → K⁰_SK⁻π⁺π⁺
CPV in decays of charmed baryons
Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

C_{TP} asymmetry: so-called 'up-down asymmetry'

• CPV in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$: never been searched. They have large branching fractions $\mathcal{B} = 0.23\%(1.53\%)$ $\Rightarrow \mathcal{O}(10^5)$ signals expected, inspiring us to obtain their precise $a_{CP}^{T-\text{odd}}$ results for the first time.

۲

 $D_s^+ \rightarrow K_c K^+ \pi^+ \pi^- (CF)$

 $D^+_{-} \rightarrow K^+ K^- \pi^+ \pi^0$ (CF)

 $D_{+}^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{0}$ (SCS)

-0.04

-0.06

-0.02

(-8.2±5.2)×10⁻³ [FOCUS/ BaBar/ Belle]

(2.2±3.3±4.3)×10⁻³

(-1.1±2.2±0.1)% [Belle]

4 E N 4 E N

0.04

0.06

ELE DOG

0.02

a^{T-odd}

< 口 > < 回

Charm sample Summarv 0000000 CPV searches in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ using quadruple-product correlations arXiv:2409.15777 $C_{
m QP}>$ 0: $ec{
m p}_{K^-}$ at left-side of $ec{
m p}_{K^0_c\pi^+}(ec{
m p}_{K^0_c} imesec{
m p}_{\pi^+})$ plane • We do the first CPV search with the guadruple-product (QP): in $D^+_{(\epsilon)} \to K^0_{\rm S} K^- \pi^+ \pi^+: \ C_{\rm QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi^+}) \cdot (\vec{p}_{K^0_{\rm c}} \times \vec{p}_{\pi^+}),$ where the subscripts ('h' and 'l') denote the π^+ with higher and lower momentum, respectively, of two identical π^+ in the final state. $\theta_{K=}$ • $D \to V_a V_b$ (e.g. $D^+_{(c)} \to \overline{K}^{*0} K^{*+}$ is a dominant process) amplitude

• two more observables for CPV searches^a: • $\cos \theta_{\kappa_{2}^{0}} \cos \theta_{\kappa_{2}^{-}} C_{\text{TP}}$: same sign as $\cos \theta_{\kappa_{2}^{0}} \cos \theta_{\kappa_{2}^{-}} \sin \varphi$, • $\cos \theta_{K_{0}^{0}} \cos \theta_{K^{-}} C_{QP}$: same sign as $\cos \theta_{K_{0}^{0}} \cos \theta_{K^{-}} \cos \varphi$.

(1) $d_{10}^2(\theta_a) d_{10}^2(\theta_b) \sin \varphi \propto \sin(2\theta_a) \sin(2\theta_b) \sin \varphi$, (2) $d_{1,0}^2(\theta_a) d_{1,0}^2(\theta_b) \cos \varphi \propto \sin(2\theta_a) \sin(2\theta_b) \cos \varphi$.

• $\cos \theta_{K_c^0} \cos \theta_{K^-}$ is used for charm CPV searches; its asymmetry is the so-called 'two-fold forward-backward asymmetry'^b.

^aG. Durieux and Y. Grossman, Phys. Rev. **92**. 076013 (2015)

involves terms of

^bZ.-H. Zhang, Phys. Rev. D 107, L011301

$$C_{\rm QP} < 0: \ \vec{p}_{K^-} \ \text{at right-side of} \ \vec{p}_{K_c^0\pi^+}(\vec{p}_{K_c^0}\times\vec{p}_{\pi^+}) \ \text{plane}$$

 C_{OP} asymmetry: so-called 'left-right asymmetry'.

うつつ 正面 エヨト エヨト エヨト ショー

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \circ \circ \circ \circ \circ \end{array}$	$\begin{array}{c} CPV in \ D \to PPPP \\ \texttt{OOOOOOO} \end{array}$	CPV in charmed baryon	Summary OO
Motivation: firs	t CPV searches for <i>L</i>	$\mathcal{D}^+_{(s)} o \mathcal{K}^0_{\mathcal{S}} \mathcal{K}^- \pi^+ \pi^+$	arXiv:2409.15777	
• We search for C • For $D^+_{(-)}$ decays	CPV with a set of six kinen	natic observables (X) linked	to various decay amplitude terms.	
(1) $X = C_{TP} = 1$ (2) $X = C_{QP} = 1$	$(\vec{p}_{\mathcal{K}^-} \cdot (\vec{p}_{\mathcal{K}^0_{S}} \times \vec{p}_{\pi_l^+}))$: same sign $(\vec{p}_{\mathcal{K}^-} \times \vec{p}_{\pi_h^+}) \cdot (\vec{p}_{\mathcal{K}^0_{S}} \times \vec{p}_{\pi_l^+})$: sa	as sin $arphi.$ ame sign as cos $arphi.$		
(3) $X = C_{\text{TP}} C_{\text{QP}}$ (4) $X = \cos \theta_{K_{\text{S}}^0}$ (5) $X = \cos \theta_{K_{\text{C}}^0}$: same sign as $sin(2\varphi)$. $\cos \theta_{K^{-}}$. $\cos \theta_{K^{-}} C_{TP}$: same sign as cos	$ heta_{K^0_{\mathtt{S}}}\cos heta_{K^-}\sinarphi$,		
(6) $X = \cos \theta_{K_S^0}$ • For $D_{(s)}^-$ decays	$\cos heta_{K^-} C_{ ext{QP}}$: same sign as \cos : $\overline{X} = \eta_X^{CP} X$, where $\eta_X^{CP} =$	$ heta_{\kappa_{ m S}^0}^{ect}\cos arphi_{{\cal K}^-}}\cos arphi.$ = -1 for ($C_{ m TP},\ C_{ m TP}C_{ m QP}$ and c	$\cos heta_{K_{ m S}^0} \cos heta_{{\cal K}^-} {\it C}_{ m TP});$ while $\eta_X^{C\!P}=-1$	+1 for others.
The Linear	D^+			

• The kinematic asymmetries for $D^+_{(s)}$ and $D^-_{(s)}$ decays:

 $A_X(D_{(s)}^+) = \frac{N_+(X>0) - N_+(X<0)}{N_+(X>0) + N_+(X<0)} \qquad \qquad A_{\overline{X}}(D_{(s)}^-) = \frac{N_-(\overline{X}>0) - N_-(\overline{X}<0)}{N_-(\overline{X}>0) + N_-(\overline{X}<0)}$

• *CP*-violating parameter: $\mathcal{A}_{CP}^{X} = \frac{1}{2} (A_X(D_{(s)}^+) - A_{\overline{X}}(D_{(s)}^-))$ (the factor 1/2 is required for normalization) to avoid a fake signal of CPV arising from the final state interaction (FSI) effects.

李龙科,湖南师大

HFCPV 2024, 10月26日于街阳 12/18

李龙科,湖南师大

Charm CPV at Belle and Belle

HFCPV 2024, 10月26日于街阳 13/18

► We perform a simultaneous fit on these four X-subsamples with eight floated parameters: N_+ , N_{-} , A_X , and a_{CP}^{χ} along with background yield per subsample.

Decay	X	\mathcal{A}_{CP}^{X} (10 ⁻³) at Belle	$\mathcal{A}_{C\!P}^X$ (10^{-3}) at Belle II
	(1)	$-4.0\pm5.9\pm3.0$	$-0.2 \pm 7.0 \pm 1.8$
	(2)	$-1.0 \pm 5.9 \pm 2.5$	$-0.4 \pm 7.0 \pm 2.4$
D^+	(3)	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$
D^{+}	(4)	$-4.7 \pm 5.9 \pm 3.0$	$-0.6 \pm 6.9 \pm 3.0$
	(5)	$+1.9 \pm 5.9 \pm 2.0$	$-0.2 \pm 7.0 \pm 1.9$
	(6)	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$
	(1)	$-0.3 \pm 3.1 \pm 1.3$	$+1.0 \pm 3.9 \pm 1.1$
	(2)	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$
D^+	(3)	$+1.5 \pm 3.2 \pm 1.4$	$-2.7 \pm 3.9 \pm 1.7$
D_s	(4)	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$
	(5)	$-4.4 \pm 3.2 \pm 1.4$	$+0.8 \pm 3.9 \pm 1.4$
	(6)	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$

 $X = C_{TD}, C_{OD}, C_{TD}C_{OD}, \cos\theta_{H^2}\cos\theta_{H^2}, C_{TD}\cos\theta_{H^2}\cos\theta_{H^2}, \text{ and } C_{OD}\cos\theta_{H^2}\cos\theta_{H^2},$

4 E 6 4 -

< 口 > < 回

D.-

 $\overline{X} < 0$

 $\overline{X} < 0$

 $\overline{X} < 0$

- بالمان بالمرب المربية المراجع المراجع

 $\overline{X} < 0$

D-

'n

ille over

ille mouth

Mile month

the month

D-

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{c} CPV \text{ in } D \to PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary OO
Final $\mathcal{A}_{C\!P}^{\chi}$ mea	surement in $D^+_{(s)} o$	$K^0_S K^- \pi^+ \pi^+$ arXiv:24	09.15777	
• combining the	e results from Belle and Be	lle II experiments: $\mathcal{A}_{CP}^{X}(avg.) =$	$=\frac{\frac{\mathcal{A}_{CP}^{B1}/\sigma_{B1}^{2}+\mathcal{A}_{CP}^{B2}/\sigma_{B2}^{2}}{1/\sigma_{B1}^{2}+1/\sigma_{B2}^{2}}, \text{ and its unce}$	ertainty

 $\sigma_{\mathcal{A}_{CP}^{\chi}(\text{avg.})} = \frac{1}{\sqrt{1/\sigma_{B1}^2 + 1/\sigma_{B2}^2}}, \text{ where } \sigma_{B_1} \text{ and } \sigma_{B_2} \text{ are the total uncertainties (i.e. } \sigma_{\text{stat}} \oplus \sigma_{\text{syst}}) \text{ at Belle and Belle II.}$

• The \mathcal{A}_{CP}^{χ} results at Belle and Belle II and their combined results:

Decay	Х	$\mathcal{A}_{C\!P}^{\chi}$ (10 $^{-3}$) at Belle	$\mathcal{A}_{C\!P}^{\chi}$ (10 $^{-3}$) at Belle II	Combined \mathcal{A}_{CP}^{χ} (10 ⁻³)	Significance
$D^+ ightarrow K_S^0 K^- \pi^+ \pi^+$	C_{TP}	$-4.0\pm5.9\pm3.0$	$-0.2 \pm 7.0 \pm 1.8$	$-2.3{\pm}4.5{\pm}1.5$	0.5 σ
	$C_{\rm QP}$	$-1.0\pm5.9\pm2.5$	$-0.4\pm7.0\pm2.4$	$-0.7\pm4.5\pm1.7$	0.2σ
	$C_{\rm TP}C_{\rm QP}$	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$	$+3.9\pm4.5\pm1.1$	0.8σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-}$	$-4.7\pm5.9\pm3.0$	$-0.6\pm6.9\pm3.0$	$-2.9\pm4.5\pm2.1$	0.6σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-} C_{\rm TP}$	$+1.9\pm5.9\pm2.0$	$-0.2\pm7.0\pm1.9$	$+1.0\pm4.5\pm1.4$	0.2σ
	$\cos heta_{K_{ m S}^0} \cos heta_{K^-} C_{ m QP}$	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
$D_s^+ o K^+ K^- \pi^+ \pi^0$	C_{TP}	$-0.3 \pm 3.1 \pm 1.3$	$+1.0\pm3.9\pm1.1$	$+0.2{\pm}2.4{\pm}0.8$	0 .1 <i>σ</i>
	$C_{\rm QP}$	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$	$+1.1 \pm 2.4 \pm 0.9$	0.4σ
	$C_{\rm TP}C_{\rm QP}$	$+1.5 \pm 3.2 \pm 1.4$	$-2.7 \pm 3.9 \pm 1.7$	$-0.2 \pm 2.5 \pm 1.1$	0.1σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-}$	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$	$-4.7\pm2.4\pm0.8$	1.8σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-} C_{\rm TP}$	$-4.4 \pm 3.2 \pm 1.4$	$+0.8\pm3.9\pm1.4$	$-2.2 \pm 2.5 \pm 1.0$	0.8σ
	$\cos heta_{K_{ m S}^0} \cos heta_{K^-} C_{ m QP}$	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$	$-1.0 \pm 2.4 \pm 1.0$	0.4 σ

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	CPV in $D \rightarrow PPPP$ 00000000	CPV in charmed baryon	Summary

Outline

Charm sample at Belle and Belle II
CPV in D⁰ → K⁰_SK⁰
CPV in D⁺_(s) → K⁰_SK⁻π⁺π⁺
CPV in decays of charmed baryons
Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{c} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed bary ○●○	on Summary OO
direct (D)/ in A-	$- \sqrt{\kappa} + \nabla 0 \kappa +$			500
alrect CPV in Λ_c	$\rightarrow \Lambda \Lambda^+, \Delta^* \Lambda^+$	(Belle	e) Science Bulletin 68 (2023)	583
• The raw asymmetry $A_{raw}(\Lambda_c^+ \to \Lambda K^+)$ $A_{raw}(\Lambda_c^+ \to \Lambda \pi^+)$ • $\mathcal{A}_{CP}^{A_c^+ \to \Lambda h^+}(\mathcal{A}_{CP}^A)$ • $\mathcal{A}_{e}^{A_c^+}$ detection as • $\mathcal{A}_{e}^{A_c^+}$ is detection as • $\mathcal{A}_{e}^{A_c^+}$ is removed by • $\mathcal{A}_{e}^{A_c^+}$ is D^0 • $\mathcal{A}_{e}^{A_c^+}$ is D^0 • $\mathcal{A}_{E}^{A_c^+}$ arises from to γ - Z^0 interference	of $\Lambda_c^+ \to \Lambda h^+$ includes seve) $\approx \mathcal{A}_{CP}^{\Lambda_c^+ \to \Lambda K^+} + \mathcal{A}_{CP}^{\Lambda \to \rho \pi}$) $\approx \mathcal{A}_{CP}^{\Lambda_c^+ \to \Lambda \pi^+} + \mathcal{A}_{CP}^{\Lambda \to \rho \pi}$) $\approx \mathcal{A}_{CP}^{\rho \pi^-}$): <i>CP</i> asymmetry associate ymmetry arising from efficiencies widthing $w_{\Lambda_c^+, \overline{\Lambda_c^-}} = 1 \mp \mathcal{A}_{\varepsilon}^{K^+}$ [c $\to K^- \pi^+$ and $D_s^+ \to \phi \pi^+$ $\to K^- \pi^+ \pi^+$ and $D^0 \to K^- \pi^+ \pi^+$ the forward-backward asymmetry ince and higher-order QED effects	ral asymmetry sources: $\begin{array}{l} - + A_{\epsilon}^{\Lambda} + A_{\epsilon}^{K^+} + A_{FB}^{\Lambda_{c}^+} \\ - + A_{\epsilon}^{\Lambda} + A_{\epsilon}^{\pi^+} + A_{FB}^{\Lambda_{c}^+} \\ d \text{ with } \Lambda_{c}^+ (\Lambda) \text{ decay,} \\ \text{between } \Lambda \text{ and } \overline{\Lambda}. \\ \cos \theta, p_T] \end{array}$ f^{0} (FBA) of Λ_{c}^+ production due in $e^+e^- \rightarrow c\overline{c}$ collisions.	$F_{eq}(r) = F_{eq}(r) = F_{\mathsf$	$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} 0000 \\ 0000 \\ 0 \end{array} \right) \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \right) \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \right) \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \begin{array}{c} 0000 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 00000 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 00000 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 00000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 00000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 00000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 00000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 000000 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}

• Result: $\Delta A_{\text{raw}} = A_{\text{raw}}^{\text{corr}}(\Lambda_c^+ \to \Lambda K^+) - A_{\text{raw}}^{\text{corr}}(\Lambda_c^+ \to \Lambda \pi^+) = A_{CP}^{\text{dir}}(\Lambda_c^+ \to \Lambda K^+) - A_{CP}^{\text{dir}}(\Lambda_c^+ \to \Lambda \pi^+) = A_{CP}^{\text{dir}}(\Lambda_c^+ \to \Lambda K^+)$

The reference mode and signal mode have nearly same Λ kinematic distributions, including the Λ decay length, the polar angle and the momentum of the proton and pion in the laboratory reference frame.

• $\mathcal{A}_{CP}^{\mathrm{dir}}(\Lambda_c^+ \to \Lambda K^+) = (+2.1 \pm 2.6 \pm 0.1)\%$

•
$$\mathcal{A}_{CP}^{\mathrm{dir}}(\Lambda_c^+ \to \Sigma^0 K^+) = (+2.5 \pm 5.4 \pm 0.4)\%$$

First \mathcal{A}_{CP}^{dir} for SCS two-body decays of charmed baryons.

-

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	CPV in $D \rightarrow PPPP$ 00000000	CPV in charmed baryon ○○●	Summary 00
baryonic α -induced	CPV in $\Lambda_c^+ o \Lambda K^+$, 2	$\Sigma^0 K^+$	(Belle) Science Bulletin 68 (2023) 583	

(SCS) $\Lambda_c^+ o \Lambda K^+$, $\Sigma^0 K^+$

- Measure $\alpha/\bar{\alpha}$ for the separate $\Lambda_c^+/\bar{\Lambda}_c^-$ samples.
- Calculate $\mathcal{A}^{\alpha}_{CP} \equiv (\alpha_{\Lambda_{c}^{+}} + \alpha_{\overline{\Lambda_{c}^{-}}})/(\alpha_{\Lambda_{c}^{+}} \alpha_{\overline{\Lambda_{c}^{-}}}).$

- Result: $\mathcal{A}^{\alpha}_{CP}(\Lambda^+_c \to \Lambda K^+) = -0.023 \pm 0.086 \pm 0.071$ $\mathcal{A}^{\alpha}_{CP}(\Lambda^+_c \to \Sigma^0 K^+) = +0.08 \pm 0.35 \pm 0.14$ First $\mathcal{A}^{\alpha}_{CP}$ results for charmed baryon SCS decays.
- No evidence of CPV is found.

(CF) $\Lambda_c^+ \rightarrow \Lambda \pi^+$, $\Sigma^0 \pi^+$

- Probe A-hyperon CPV in charmed baryon CF decays, inspired by PLB 849 (2024) 138460 (JP Wang, FS Yu).
- Under a reasonable assumption $\alpha_{\Lambda_c^+} = -\alpha_{\bar{\Lambda}_c^-}$ in CF decays,

we have $\mathcal{A}_{CP}^{\alpha}(\Lambda \to p\pi^{-}) = \mathcal{A}_{CP}^{\alpha}(\text{total}) \equiv \frac{{}^{\alpha}\Lambda_{c}^{+}{}^{\alpha}{}^{-}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}{}^{+}{}^{+}{}^{+}{}^{+}{}^{\alpha}\Lambda_{c}^{-}{}^{\alpha}\Lambda_$

Image: A matrix

• Result: $A^{*}_{CP}(\Lambda \rightarrow p\pi^{-}) = +0.013 \pm 0.007 \pm 0.011$ The first result of hyperon CPV in charm CF decays

4 E N 4 E N

ELE DOG

Charm sample	$\begin{array}{c} \textbf{CPV in } D \rightarrow PP \\ \texttt{OOOO} \end{array}$	$\begin{array}{c} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOOO} \end{array}$	CPV in charmed baryon	Summary ●O

Outline

Charm sample at Belle and Belle II
 CPV in D⁰ → K⁰_SK⁰_S
 CPV in D⁺_(s) → K⁰_SK⁻π⁺π⁺
 CPV in decays of charmed baryons
 Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Charm sample

Summary: charm CPV results at Belle II

- Belle II experiment has joined the game. A dataset of (B+B2) 1.5 ab^{-1} is available.
- After the wave of charm lifetimes, new waves (e.g first charm CPV results) start:
- Time-integrated *CP* asymmetry of $D^0 \rightarrow K^0_S K^0_S$ is updated:
 - precision: 1.3%, new variable used w.r.t Belle result: better control mode:
 - next: new sample; more luminosity.
- First CPV search in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ using TP/QP correlations.
 - precision: 0.5% for D^+ decay; < 0.3% for D_s^+ decay.
 - most precise $a_{CP}^{T-\text{odd}}$ for D^+ SCS decays and D_{ϵ}^+ CF decays; and the other a_{CP}^{X} results are the first such measurements. • next: more channels; CPV search in $D \rightarrow [P \rightarrow [V \rightarrow P_1P_2]P_3]P_4$?
- CPV in decays of charmed baryons ($\Lambda_c^+ \rightarrow \Lambda h^+$ at Belle); CPV in $\Lambda_c^+ \to \Lambda K_c^0 h^+$ (TPA/QPA), $\Lambda_c^+ \to \Sigma^+ K_c^0$ (α); on the road,
- Recent results on charmed baryon: see Suxian's talk.
- More charm CPV results with increasing luminosity in the future.
- Please stay tuned in the Belle II channel.

5 1 S Q Q

Thank you for your attention.

谢谢!

Dr. Longke LI (李龙科) School of Physics and Electronics Hunan Normal University 36 LuShan Road, YueLu District, Changsha, 410081, P. R. China [™] lilongke_ustc

lilongke@mail.ustc.edu.cn

李龙科,湖南师大

Charm CPV at Belle and Belle II

HFCPV 2024, 10月26日于街阳 19/18

Detector: Belle II Vs. Belle

李龙科,湖南师大

Charm CPV at Belle and Belle

HFCPV 2024, 10月26日于衡阳

20/18

from KEKB to SuperKEKB

- ▶ As 1st and 2nd generation B-factories, KEKB and SuperKEKB have many similarities, and more differences:
 - Damping ring added to have low emittance positrons / use 'Nano-beam' scheme by squeezing the beta function at the IP.
 - beam energy: admit lower asymmetry to mitigate Touschek effects / beam current: ×2 to contribute to higher luminosity.
 - SuperKEKB achieved the luminosity record of $4.7 \times 10^{34} \ cm^{-2} s^{-1}$.

李龙科,湖南师大

h

Lenz, IJMP A30 (2015) Lenz et al., JHEP 12 (2020) 199 King, Lenz et al., JHEP 08 (2022) 241 Gratrex et al ... IHEP 07 (2022) 058

Theory:

- qualitatively understood in terms of simple diagrams. e.g., $c \rightarrow s e^+ v$ partial width gives $G_c^2 m_s^5 |V_{ss}|^2 / (192\pi^3)$ dependence. Long D+ lifetime can be understood as arising from destructive interference between spectator and colorsuppressed amplitudes. But this doesn't include QCD...
- to include QCD: calculate using the Heavy Quark Expansion

$$\begin{split} \Gamma(D) &= \ \frac{1}{2m_D} \sum_{X} \sum_{\dot{P}S} (2\pi)^4 \delta^{(4)}(p_D - p_X) \ |\langle X(p_X) | \mathcal{H}_{\text{eff}} | D(p_D) \rangle|^2, \\ &\rightarrow \ \frac{1}{2m_D} \text{Im} \langle D | \mathcal{T} | D \rangle \quad \text{where} \quad \mathcal{T} = i \int d^4x \ T \ \{\mathcal{H}_{\text{eff}}(x), \mathcal{H}_{\text{eff}}(0)\} \\ &\rightarrow \ \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_6 \rangle}{m_c^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_c^3} + \ldots + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_c^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_c^4} + \ldots \right) \end{split}$$

Wilson coefficients *L* are expanded in powers of α_{\bullet} and calculated perturbatively

⇒ comparing lifetime calculations with measurements tests/improves our understanding of QCD

W

A. J. Schwartz Charm lifetimes, semilentonic decays at Belle II

李龙科,湖南师大

Charm lifetimes PRL 127, 211801 (2021); PRL 130, 071802 (2023); PRD 107, L031103 (2023); PRL 131, 171803 (2023

- Hadron lifetimes are difficult to calculate theoretically, as they depend on nonperturbative arising from QCD.
- Comparing calculated values with measured values improves our understanding of QCD. [(FLAG) EPJC 82, 869 (2022)]
- Belle II early dataset gave the most precise charm lifetimes: $\tau(D^0) = 410.5 \pm 1.1 \pm 0.8$ fs, $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1$ fs, $\tau_{D^\pm} = (499.5 \pm 1.7 \pm 0.9)$ fs, and $\tau(\Lambda_c^+) = 203.20 \pm 0.89 \pm 0.77$ fs.
- confirm the new charmed baryon lifetime hierarchy found by LHCb $\tau(\Omega_c^0)$ result.

Equalization of kinematic-parameter distributions of $D^0 o K^0_{ m S} K^0_{ m S}$, $K^+ K^-$

-

X-dependent efficiency in $D^+_{(s)} o K^0_S K^- \pi^+ \pi^+$

李龙科,湖南师大

315

< □ > < 同

Event selection and optimization: $D_{(s)}^+$ flight significance $L_{dec}/\sigma_L(D_{(s)}^+)$

• This flight significance of D^+ is more efficient than D_s^+ due to longer lifetime in D^+ ;

• This flight significance is more efficient at Belle II than Belle because of an improved time resolution at Belle II.

李龙科,湖南师大

< 口 > < 同

E 900