

University of Chinese Academy of Sciences

Latest measurements of CP violation at LHCb

- 李佩莲 (UCAS)
- lipeilian@ucas.ac.cn

- 第二十一届全国重味物理和CP破坏研讨会
 - 2024.10.26、衡阳

Outline

- Introduction
- CKM angle γ
- CKM angle $\beta_{(s)}$
- Direct CPV in Beauty
- CPV in charm
- CPV in Baryons See in the next talk by Xinchen Dai

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

CKM matrix

$$V_{V_{CKM}} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

• Key test of the SM: Verify unitarity of CKM matrix

- Magnitudes: branching fractions or mixing frequencies
- Phases: CP violation measurement

Sensitive probe for new physics

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

$$\operatorname{trg}\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Three types of CP Violation

- OP-violating nature of weak interaction has multiple manifestations
- Requires two interfering amplitudes with different strong and weak phases

CP violation in mixing Unequal transition probabilities between flavour eigenstates $P(B \rightarrow \overline{B}) \neq P(\overline{B} \rightarrow B)$ q/p

Time-dependent or time-integrated difference of decay rates of initial flavour eigenstates $\Gamma(B_{(\longrightarrow \overline{B})} \to f_{CP})(t) \neq \Gamma(\overline{B}_{(\longrightarrow B)} \to f_{CP})(t)$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

CP violation in interference of decays with/without mixing

γ measurements

- Relative weak phase γ in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transition
- Measured with tree-level decays, theoretically clean observable ($\delta \gamma \sim 10^{-7}$)

veen $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ transition ally clean observable ($\delta \gamma \sim 10^{-7}$)

measurements

- Relative weak phase γ in interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transition
- Measured with tree-level decays, theoretically clean observable ($\delta \gamma \sim 10^{-7}$)

$$\Gamma(B^{\pm} \to Dh^{\pm}) \propto |\mathbf{r}_{D} e^{-i\delta_{D}} + \mathbf{r}_{B} e^{i(\delta_{B} \pm \gamma)}|^{2} \Rightarrow r_{D}^{2} + r_{B}^{2} + 2\kappa_{D}\kappa_{B}\mathbf{r}_{D}\mathbf{r}_{B}\mathbf{cos}(\delta_{B} + \delta_{D} \pm \gamma)$$

- Interference occurs when D^0 and \overline{D}^0 decay to the same final state f
 - ♦ GLW: CP eigenstates, e.g. D =
 - ♦ ADS: CF or DCS decays, e.g. $D \rightarrow K\pi$
 - - D decay phase space, e.g. $D \rightarrow K_s^0 \pi \pi$
 - \diamond Time-dependent: $B_s^0 \rightarrow D_s^- K^+ \&$ Dalitz: $B^0 \rightarrow \overline{D}^0 K^+ \pi^-$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

$$\rightarrow KK, D \rightarrow \pi\pi$$

Output Begin a Begin and Begin an

γ measurement in $B^+ \to DK^{*+}(\to K_s^0\pi^+)$

• CP eigenstates $D^0 \rightarrow \pi^+\pi^-, K^+K^-, \pi^+\pi^-\pi^-$

- Suppressed decays $D^0 \to K^- \pi^+, \pi^+ K^- \pi^+ \pi^-$
- Self-conjuated multi-body decays $D^0 \rightarrow K_S^0 h^+ h^-$
- Inputs for $D^0 \to K^0_S h^+ h^-, \pi^+ \pi^- \pi^-$ from BESIII [PRD106.092004, PRD82(2010)112006, PRD102(2020)]

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

LHCb-PAPER-2024-023 in preparation

 $\gamma = (63 \pm 13)^{\circ}$

γ measurements

P. Li · HF-CPV wor

γ measurement in $B_{c}^{0} \rightarrow D_{c}^{\mp}K^{\pm}$

 Time-dependent CP violations measurement • Interference between mixing and decay \rightarrow relative phase difference of $\gamma - 2\beta_s$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

LHCb-PAPER-2024-020 in preparation

Latest γ combination

 $\gamma = (64.6 \pm 2.8)^{\circ}$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

LHCb-CONF-2024-004

• A combination of all measurements of γ and $D^0 - \bar{D}^0$

$\sin 2\beta \operatorname{in} B^0 \to \psi K_{\varsigma}^0$

• Decay mode $B^0 \to \psi K^0_S$ (CP-odd only) offers a theoretically clean access to the CKM angle β

 $A_{CP}(t) =$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

$$= \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin 2\beta \cdot \sin(\Delta mt)$$

 Consistent with other measurements, still statistical uncertainty limited

LHCb results dominate the latest World Average

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

$$68^{+0.0006}_{-0.0009}) \text{ rad}$$

$$22^{\circ}) \qquad \bullet \text{ Golden mode: } B^0_s \to J/\psi\phi$$

$$(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin\phi_s \cdot \sin(\Delta m_s t)$$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-16-20

68^{+0.0006}_{-0.0009}) rad
22°) • Golden mode:
$$B_s^0 → J/ψφ$$

$$f(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin\phi_s \cdot \sin(\Delta m_s t)$$

Time-dependent CPV in $B_{(c)}^0$

- Different from the golden mode $B^0 \to J/\psi K_S^0$, the loop-mediated penguin contribution in $B^0 \to D^+D^-$ can not be ignored, effective phase $sin(\phi_d^{eff} \equiv sin(-2\beta))$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

New

arXiv: 2409.03009

$$\beta + \Delta \phi_d = -S_{D^+D^-} / \sqrt{1 - C_{D^+D^-}^2}$$

• With external inputs $\Delta \phi_d$ can be measured to constrain $\Delta \phi_s$ in $B_s^0 \to D_s^+ D_s^-$ assuming U-spin symmetry

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

New

• CP asymmetry observed in $B^0 \rightarrow D^+D^-$ for the first time with a significance exceeding 6σ

> $S_{D^+D^-} = -0.552 \pm 0.100 \,(\text{stat}) \pm 0.010 \,(\text{syst})$ $C_{D^+D^-} = 0.128 \pm 0.103 \,(\text{stat}) \pm 0.010 \,(\text{syst})$

> > [PRL117 (2016) 261801, PRD79 (2009) 032002]

- In consistent with previous LHCb and BaBar results, and corresponding to a small contribution from higher-order SM corrections [PRD85 (2012) 091106]
- Move the world average further away from the Belle result

• Combined with previous LHCb result:

 $S_{D^+D^-} = -0.549 \pm 0.085 \,(\text{stat}) \pm 0.015 \,(\text{syst})$ $C_{D^+D^-} = 0.162 \pm 0.088 \,(\text{stat}) \pm 0.009 \,(\text{syst})$

Time-dependent CPV in $B_{(s)}^0 \rightarrow D_{(s)}^+ D_{(s)}^-$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

New

$$\phi_s = -0.086 \pm 0.106 \text{ (stat)} \pm 0.028 \text{ (syst) rad},$$

 $_{D_s^-}| = 1.145 \pm 0.126 \text{ (stat)} \pm 0.031 \text{ (syst)}.$

$$\phi_s = -0.055 \pm 0.090 \,(\text{stat}) \pm 0.021 \,(\text{syst}) \,\text{rad}$$

 $_{D_s^-}| = 1.054 \pm 0.099 \,(\text{stat}) \pm 0.020 \,(\text{syst})$

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

- Proceeding via a $b \to c \bar{c} d$ transition, $B^+ \to J/\psi \pi^+$ is enriched with penguin contribution \Rightarrow Expect O(1%) direct CP violation [PRD 49 (1994) 5904, PRD 52 (1995) 242]
- Ideal place to look for yet unobserved direct CP violation in B decays to charmonia

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

New

LHCb-PAPER-2024-31 in preparation

• Important control channel to understand penguin effects in sin 2β measurement in $B^0 \to J/\psi K^0$

[PRD 79 (2009) 014030, JHEP 03 (2015) 145]

$$R_{\pi/K} \equiv \frac{\mathcal{B}(B^+ \to J/\psi\pi^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = \frac{N_{\pi}}{N_K} \times \frac{\epsilon_K}{\epsilon_{\pi}}$$

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

• Run 2 result, conservatively assuming fully correlated systematic uncertainties • Compatible with Run 1 result: $\Delta A^{CP} = (1.82 \pm 0.86 \pm 0.14) \times 10^{-2}$

[Phys. Rev. D 95, 052005 (2017)] • Taking previous LHCb result of $A^{CP}(B^+ \rightarrow J/\psi K^+) = (0.09 \pm 0.27 \pm 0.07) \times 10^{-2}$ to extract: $A^{CP}(B^+ \rightarrow J/\psi \pi^+) = (1.51 \pm 0.50 \pm 0.11) \times 10^{-2}$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

New

LHCb-PAPER-2024-31 in preparation

 $\Delta A^{CP} = A^{CP}(B^+ \to J/\psi\pi^+) - A^{CP}(B^+ \to J/\psi K^+) = (1.29 \pm 0.49 \pm 0.08) \times 10^{-2}$

Combined with Run 1 result:

 $\mathscr{R}_{K/\pi} = (3.852 \pm 0.022 \pm 0.018) \times 10^{-2}$

 $\Delta A^{CP} = (1.42 \pm 0.43 \pm 0.08) \times 10^{-2}$

First evidence for direct CP violation in beauty decays to charmonium final states (3.2σ)

agrees with PDG value $A^{CP}(B^+ \rightarrow J/\psi \pi^+) = (1.8 \pm 1.2) \times 10^{-2}$

Direct CPV in $B^+ \rightarrow J/\psi \pi^+$

- Decay amplitudes of $B^+ \to J/\psi h^+$
 - $A(B^+ \to J/\psi\pi^+) = -\lambda \mathcal{A}(1 + ae^{i\theta}e^{i\gamma})$ $A(B^+ \to J/\psi K^+) = (1 - \lambda^2/2)\mathcal{A}'(1 + \epsilon a' e^{i\theta'} e^{i\gamma})$
- $\lambda = V_{\mu s}, \ \epsilon = \lambda (1 \lambda^2), A^{(\prime)}$ is the hadronic matrix element LHCb combined result of CKM angle $\gamma = (64.6 \pm 2.8)^{\circ}$
 - SU(3) flavour symmetry: $a = a', \theta = \theta'$
 - Constraints on the relative size (a) and strong phase difference (θ) between penguin and tree contributions

New

LHCb-PAPER-2024-31 in preparation

The 68% confidence-level contours in the complex plane

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed • Tiny weak phases in first two generations of CKM matrix ($<\lambda_b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed • Tiny weak phases in first two generations of CKM matrix ($<\lambda_b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

Breakthroughs by LHCb thanks to huge statistics: First observation of CPV in $D^0 \rightarrow h^+h^-$ decays Evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decay $A_{CP}(\pi^+\pi^-) = (23.2 \pm 6.1) \times 10^{-4} (3.8\sigma)$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

- $\Delta A_{CP} = A_{CP}(K^+K^-) A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} \text{ [PRL(2019)211803]}$

 - [PRL(2023)211803]

Direct CP violation in $D^+ \rightarrow K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,C} - \Delta A_{\rm raw}^{\rm globa}$$

 Test-statistic to extract a p-value for the hypothesis of no localised CP violation

arXiv:2409.01414

Direct CP violation in $D^+ \rightarrow K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

$$\Delta A_{CP}^{i} = A_{\rm raw}^{i,S} - A_{\rm raw}^{i,C} - \Delta A_{\rm raw}^{\rm globa}$$

 Test-statistic to extract a p-value for the hypothesis of no localised CP violation

New

• p-values (2.3-14.1%) compatible with absence of localised CP violation in Dalitz plot

Direct CP violation in $D^+ \to K^+ K^- \pi^+$

- Search for localised CP violation in the phase space of $D^+ \to K^+ K^- \pi^+$ (S) decay
- Control channel $D_s^+ \to K^+ K^- \pi^+$ (C) to subtract nuisance asymmetries

•
$$\Delta A_{CP}^i$$
 precision up to 10^{-3}

$$A_{CP|S}^{\phi\pi^{+}} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$$
$$A_{CP|S}^{\overline{K}^{*0}K^{+}} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$$

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

• p-values (2.3-14.1%) compatible with absence of localised CP violation in Dalitz plot

Time-dependent CP violation in $D^0 \rightarrow K\pi$

Interference between mixing and decay for favoured RS and suppressed WS decays

DCS over CF amplitude $R_{K\pi}^{\pm}(t) pprox R_{K\pi} \left(1 \pm A_{K\pi}\right) + R_{K\pi} \left(1 \pm A_{K\pi}
ight)$

CPV observables: $A_{K\pi}$ (in decays), $\Delta c_{K\pi}$ (in interference), $\Delta c'_{K\pi}$ (in mixing). Mixing observables: $c_{K\pi}$, $c'_{K\pi}$ P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

$$\left(\mathbf{c}_{\mathbf{K}\pi} \pm \Delta \mathbf{c}_{\mathbf{K}\pi} \right) \left(\frac{t}{\tau_{D^0}} \right) + \left(\mathbf{c}_{\mathbf{K}\pi}' \pm \Delta \mathbf{c}_{\mathbf{K}\pi}' \right) \left(\frac{t}{\tau_{D^0}} \right)$$

Time-dependent CP violation in $D^0 \to K\pi$

Measured with yields: RS ~400 M, WS ~1.6 M

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

arXiv:2407.18001

 $c_{K\pi} \approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^M \sin \Delta_f$

Time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

First measurement of time-dependent CP violation in SCS mode

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

Phys. Rev. Lett. 133 (2024) 101803

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y dx \right] \right]$$

$$\Delta Y \equiv \eta_{CP} \Delta Y_{f_{CP}} = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-10}$$

Looking at Run 3 and beyond

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS	_			
EW Penguins									
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007	Great	opportunities for much more			
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008	propio	a magging manta and ND again			
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	_	0.02,0.02,0.05	precis	e measurements and MP sea			
$\underline{\mathbf{CKM} \ \mathbf{tests}}$									
γ , with $B_s^0 \to D_s^+ K^-$	$(^{+17}_{-22})^{\circ}$ [136]	4°	—	1°	_				
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_				
$\sin 2\beta$, with $B^0 \to J/\psi K_{ m S}^0$	0.04 [609]	0.011	0.005	0.003	_	0.6 _ ਹੰ sin 2β Δm _d & Δm _s			
ϕ_s , with $B_s^0 \to J/\psi \phi$	$49 \mathrm{mrad}[44]$	$14 \mathrm{\ mrad}$	—	$4 \mathrm{mrad}$	$22 \mathrm{mrad}[610]$				
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	$170 \mathrm{mrad}[49]$	$35 \mathrm{mrad}$	—	$9 \mathrm{mrad}$	_				
$\phi_s^{s\bar{s}s}$, with $B_s^0 o \phi \phi$	$154 \mathrm{mrad}[94]$	39 mrad	—	$11 \mathrm{mrad}$	Under study [611]				
$a_{ m sl}^s$	$33 \times 10^{-4} \ [211]$	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	_	0.3			
$ert V_{ub} ert / ert V_{cb} ert$	$6\% \; [201]$	3%	1%	1%	_	0.2			
<u>Charm</u>									
$\Delta A_{CP}(KK-\pi\pi)$	$8.5 imes 10^{-4}$ [613]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes10^{-5}$	_				
$A_{\Gamma} (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ [240]	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes10^{-5}$	_				
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes10^{-5}$	_	$\overline{0}$			
$x\sin\phi$ from multibody decays		$(K3\pi) \ 4.0 imes 10^{-5}$	$(K_{ m S}^0\pi\pi)~1.2 imes 10^{-4}$	$(K3\pi) \ 8.0 imes 10^{-6}$	_				

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

) ir	$\times 10^{33} \text{ cm}^{-2} s$	-1 Ig	$\sim \mathscr{L}_{\text{max}} \sim 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ ~40 visible interaction/bunch-crossing						
- (Goal: 50 fb ⁻¹ Consolidation		<u>Upgrade l</u>	← Goal: 300 fb ⁻¹ →					
	LS3	Run 4	LS4	Run 5	LS5	Run 6			
5	2026 2027 2028	2029 2030 2031 203	2 2033 2034	2035 2036 2037 2039	2040	2041 2042			

LHCb-PUB-2018-009

Summary

In LHCb dominates the world average of many measurements in CKM and CPV samples, providing the most precise results

Run 3 has collected more data than Run 1+2, a lot of new results to come!

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

- ✓ Various measurement of CP violation in $B_{(s)}^0$ and D^0 decays with LHCb Run 1+2 data
- In the second second

LHCb Experiment at CERN

Run / Event: 255623 / 300064

LHCb ГНСр

Data recorded: 2022-11-25 09:40:16 GMT

Back up slides

LHCb detector

General purpose detector specialised in beauty and charm hadrons

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

LHCb performance: JINST 14 (2019) P04013

 $2 < \eta < 5$

LHCb detector

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim O(1 \text{ GeV}/c)$, flight distance L~1mm

 $2 < \eta < 5$

LHCb detector

Control of penguin contribution

- $\sigma(\phi_s) \sim 0.016$ comparable with the theoretical estimation of $\Delta \phi_s^{penguin} \sim 1^\circ \approx 0.017$, better control of penguin effect necessary
- Combined analysis of penguin contributions in ϕ_s and ϕ_d (sin 2 β), using SU(3) flavour symmetry

$$egin{aligned} \phi_d &= ext{sin}(2eta^{ ext{tree}}) + \Delta \phi_d^{ ext{penguin}} + \phi_d^{ ext{NP}} \ \phi_s &= \phi_s^{ ext{tree}} + \Delta \phi_s^{ ext{penguin}} + \phi_s^{ ext{NP}} \end{aligned}$$

J.Phys.G 48 (2021) 6, 065002

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

Method to measure ΔA^{CP}

> CP asymmetries

Raw asymmetries from mass fit

> Production asymmetries largely cancelled

> CP asymmetry difference $\Delta A^{CP} \equiv A^{CP} (B^{\mp} \longrightarrow J/\psi \pi^{\mp}) - A^{CP} (B^{\mp} \longrightarrow J/\psi K^{\mp})$

P. Li · HF-CPV WOrkshup · UF v al LITUN · 2024-10-20

- $= \Delta a^{\rm raw} \Delta a^{\rm prod} \Delta a^{\rm det} \Delta a^{\rm PID}$

credit: Manshu Li

γ measurements

B decay	D decay	Ref.	Dataset	Status since					
				Ref. [14]					
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before					
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	$\mathrm{Run}\;1\&2$	New	D decay	Observable(s)	Ref	Dataset	Stati
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	$\mathrm{Run}\;1\&2$	As before	D doody	0.0001.40010(0)	1001.		Ref.
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h'^{\mp} \pi^0$	[37]	$\mathrm{Run}\;1\&2$	As before	$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[44-46]	Run 1&2	As b
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	$\mathrm{Run}\;1\&2$	As before	$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[46-48]	Run 2	As b
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[39]	$\mathrm{Run}\;1\&2$	As before	$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^- \pi^+}$	[49, 50]	Run 1&2	$As \ b$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^{\pm} h'^{\mp} \ (\mathrm{PR})$	[35]	Run 1&2	As before	$D^0 ightarrow h^+ h^-$	ΔY	[51 - 54]	Run 1&2	$As \ b$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ({ m PR})$	[20]	Run 1&2	New	$D^0 \to K^+ \pi^-$ (double tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[55]	Run 1	$As \ b$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K^0_{ m S} h^+ h^- ~({ m FR})$	[21]	Run 1&2	New	$D^0 \to K^+ \pi^- \text{ (single tag)}$	$R_{K\pi},A_{K\pi},c_{K\pi}^{(\prime)},\Delta c_{K\pi}^{(\prime)}$	[27, 56]	Run 1&2	Upd
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[57]	Run 1	$As \ b$
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$[22]^{\dagger}$	Run 1&2	$\mathbf{Updated}$	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x,y	[58]	Run 1	As b
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	$[22]^{\dagger}$	Run 1&2	\mathbf{New}	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[59]	Run 1	$As \ b$
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before	$D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[60, 61]	Run 2	As b
$B^0 \to DK^{*0}$	$D ightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated	$D^0 \to \pi^+ \pi^- \pi^0$	$\Delta Y^{ m eff}$	[26]	Run 2	New
$B^0 \to DK^{*0}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[23]	Run 1&2	Updated					
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated					
$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ ightarrow {ar K}^- \pi^+ \pi^+$	[41]	Run 1	As before					
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	$[25, 42]^{\dagger}$	Run 1&2	Updated					
$B_s^0 ightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	Run 1&2	As before					

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

P. Li · HF-CPV workshop · CPV at LHCb · 2024-10-26

