第21届 全国重味物理与CP破坏研讨会

THE 21ST NATIONAL SYMPOSIUM ON HEAVY FLAVOR PHYSICS AND CP VIOLATION

HFCPV2024 湖南 衡阳 2024.10.25-10.29

Recent results on baryons and charmed baryons from Belle and Belle II

Belle and Belle II Experiments

- Asymmetric e^+e^- colliders
- Collisions mainly at 10.58 GeV , i.e at $\Upsilon(4S)$ resonance

<u>KEKB</u>

1999-2010

- e^+ (3.5 GeV) e^- (8 GeV)
- L_{peak} : 2.1 × 10³⁴ cm⁻²s⁻¹ [achieved]

SuperKEKB

2019-current

- e^+ (4 GeV) e^- (7 GeV)

Achieved: $\int Ldt > 530 \ fb^{-1}$

 $L_{peak} = 4.7 \times 10^{34} \ cm^{-2} s^{-1}$

Current world record

Two primary mechanisms for charm production at Belle/Belle II:

1. $e^+e^- \rightarrow c\bar{c} \rightarrow X_c$

- Absolute measurements not possible without reference
- Used for most analyses due to its simplicity compared to $B\overline{B}$ processes

2. $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} \rightarrow X_c$

• Precise $B\overline{B}$ cross section allows for absolute measurements

Full topics for charm physics:

- $\succ D^0 \overline{D^0}$ mixing
- Amplitude analysis
- ➢ Lifetime
- \succ CP violation
- \succ Rare decay
- Charmed baryon

Selected Topics

- Charmed Baryon Spectroscopy:
 - Search for excited charmed baryons in $\Lambda_c^+\eta$ system
- Hadronic decay of charmed baryons:
 - $\Xi_c^0 \rightarrow \Xi^0 h^0 (h^0 = \pi^0, \eta, \eta')$
 - $\Lambda_c^+ \to \Sigma^+ \eta^{(\prime)}, \dots$
- Semileptonic decays of charmed baryons:
 - $\Xi_c^0 \rightarrow \Xi^0 l^+ l^-$
- First observation of $\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

Search for excited charmed baryons in $\Lambda_c^+\eta$ system

	Λ_c	
J^P	Theory (MeV)	Experiment (MeV)
$\frac{1}{2}^{+}$	2285	2285
	2857	
	3123	
$\frac{3}{2}$ +	2920	
2	3175	
	3191	
$\frac{5}{2}$ +	2922	2881
	3202	
	3230	
$\frac{1}{2}$	2628	2595
2	2890	
	2933	
<u>-</u>	2630	2628
	2917	
	2956	
$\frac{5}{2}$ –	2960	
2	3444	
	3491	

Only a few states found in experiment!!

Study of the $\Lambda\eta$ channel suggests $\Lambda_c^+\eta$ an interesting channel:

 $(1) \: \Lambda(2000) \to \Lambda \eta$

(2) Threshold cusp

Any signal in $\Lambda_c^+ \eta$ is likely to be an excited Λ_c^+ rather than a Σ_c state.

Search for excited charmed baryons in $\Lambda_c^+\eta$ system

Belle 980/fb PRD 110, 032021 (2024)

- No significant excess is found in the M(Λ_cη) spectrum. This is in contrast to excited hyperons, where resonances decaying into Λη have been observed.
- Clear Λ_c(2880)⁺ and Λ_c(2940)⁺ signals are observed in the pD⁰ mass spectrum.

Actio to $\Sigma_c(2455)\pi$:

 $R_{pD^0}(2880) = 0.75 \pm 0.03 \pm 0.07,$ $R_{pD^0}(2940) = 3.59 \pm 0.21 \pm 0.56,$

First measurement

6

Branching fractions of Λ_c^+ decays

Measurements of branching fractions of $\Lambda_c^+ o \Sigma^+ \eta$ and $\Lambda_c^+ o \Sigma^+ \eta'$

Method:
$$\frac{B(\Lambda_c^+ \to \Sigma^+ \eta / \Sigma^+ \eta')}{B(\Lambda_c^+ \to \Sigma^+ \pi^0)} = \frac{y(\Lambda_c^+ \to \Sigma^+ \eta / \Sigma^+ \eta')}{B_{\rm PDG} \times y(\Lambda_c^+ \to \Sigma^+ \pi^0)}$$

(y is the efficiency-corrected yield).

 $\Sigma^+ \rightarrow p\pi^0; \ \eta' \rightarrow \eta\pi\pi; \eta \rightarrow \gamma\gamma$

Branching fractions of Λ_c^+ decays

Branching fraction

$$\frac{B(\Lambda_c^+ \to pK_S^0 K_S^0, pK_S^0 \eta)}{B(\Lambda_c^+ \to pK_S^0)} = \frac{y(\Lambda_c^+ \to pK_S^0 K_S^0, pK_S^0 \eta)}{B_{PDG} \times y(\Lambda_c^+ \to pK_S^0)} \quad (y \text{ is the efficiency-corrected yield})$$

• $\frac{B(\Lambda_c^+ \to pK_S^0 K_S^0)}{B(\Lambda_c^+ \to pK_S^0)} = (1.48 \pm 0.08 \pm 0.04) \times 10^{-2} \implies B(\Lambda_c^+ \to pK_S^0 K_S^0) = (2.35 \pm 0.12 \pm 0.07 \pm 0.12) \times 10^{-4}$

First observation

- $\frac{B(\Lambda_c^+ \to pK_S^0\eta)}{B(\Lambda_c^+ \to pK_S^0)} = (2.73 \pm 0.06 \pm 0.13) \times 10^{-1} \implies B(\Lambda_c^+ \to pK_S^0\eta) = (4.35 \pm 0.10 \pm 0.20 \pm 0.22) \times 10^{-3}$
 - \blacktriangleright Consistent with world average value (4.15 ± 0.90) × 10⁻³ and threefold improvement in precision.

Branching fractions of $\Xi_c^0 \to \Xi^0 h^0 (h^0 = \pi^0, \eta, \eta')$

JHEP 10 (2024) 045 Belle + Belle I 1.4/ab

- ✓ Hadronic two-body decay of charmed baryons
 - Nonfactorizable amplitudes from internal W-emission and W-exchange diagram lead to the difficulties for theoretical predictions
 - Feynman diagrams_[CJPH 78, 324 (2022)] for Cabibbo-favored signal modes $\Xi_c^0 \rightarrow \Xi^0 h^0$, only nonfactorizable amplitudes contribute to.

- Serval theoretical approaches developed to deal with nonfactorizable contributions, give various predictions on branching fractions ((0.5-26.7) × 10^{-3}) and decay asymmetry parameters_[see backup].
- Need experiment measurement to clarify the theoretical picture.

Branching fractions of $\Xi_c^0 \to \Xi^0 h^0 (h^0 = \pi^0, \eta, \eta')$

✓ First measurements of the branching fractions

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\text{stat.}) \pm 0.2 (\text{syst.}) \pm 0.4 (\text{norm.})) \times 10^{-3}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\text{stat.}) \pm 0.1 (\text{syst.}) \pm 0.3 (\text{norm.})) \times 10^{-3}$

- taking $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode
- favoring predictions in SU(3) flavor symmetry_[JHEP 02, 235 (2023)]
- ✓ First asymmetry parameter $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ measurement

 $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15$ (stat.) ± 0.23 (syst.)

• through a simultaneous fit depending on differential decay rate

$$\frac{dN}{dcos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) cos\theta_{\Xi^0}$$

• consistent with predictions^[1-4]

[1]PRD 48, 4188 (1993) [2] PRD 101, 014011 (2020) [3] EPJC 7, 217 (1999) [4]PLB 794, 19 (2019)

First Belle + Belle II combined charm measurement

JHEP 10 (2024) 045

First search for $\Xi_c^0 \rightarrow \Xi^0 l^+ l^-$

- No neutrino-less semileptonic decays of charmed baryons observed yet.
 - Only upper limits of $\Lambda_c \rightarrow p\ell^+\ell^-$ decays were set for charmed baryons^[1,2], which receive both W-exchange and FCNC process contributions.
 - Theoretically face difficulties from the Hamiltonian helicity structure and hadronic form factors
 - To understand W-exchange contribution in $\Lambda_c \rightarrow p\ell^+\ell^-$
 - If observed, the signal channels would allow to test LFU

- Belle Result: No significant signal was observed but consistent with SM
- ➡ First set upper limits set at 90% CL:

	Measured	SM prediction
$\mathcal{B}(\Xi_c^0\to \Xi^0 e^+ e^-)$	< 9.9 x 10⁻⁵	< 2.35 x 10 ⁻⁶
$\mathscr{B}(\Xi_c^0\to\Xi^0\mu^+\mu^-)$	< 6.5 x 10⁻⁵	< 2.25 x 10 ⁻⁶

SM prediction: PRD **103**, 013007 (2021)

Study of $\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

Belle *Y*(1*S*, 2*S*, 3*S*) Arxiv:2207.03090

- > There are mainly two interpretations for $\Omega(2012)$: a standard baryon and a $\Xi(1530)\overline{K}$ molecule
- → A large rate for $\Omega(2012) \rightarrow \Xi(1530)$ K was predicted in the molecule scenario:

$$\frac{B(\Omega(2012) \to \Xi(1530)\overline{K})}{B(\Omega(2012) \to \Xi K)} = 0.18 - 0.86$$

• Measuring the branching fraction for $\Omega(2012) \rightarrow \Xi(1530)\overline{K} \rightarrow \Xi\pi K$ may inform us about the internal structure of $\Omega(2012)$.

Study of $\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

 $\frac{B(\Omega(2012) \to \Xi(1530)\overline{K})}{B(\Omega(2012) \to \Xi K)} = 0.99 \pm 0.26 \pm 0.06 \qquad \succ \text{ First observation of } \Omega(2012) \to \Xi(1530)\overline{K}$

- Belle & Belle II provide a unique environment & unique sensitivity for SM measurements as well as for the search for physics beyond the SM in the charm sector.
 - significant room to improve the basic knowledge of baryon decays (BR,...)
- BELLE is still producing important measurements after more than 10 years after the end of data taking
 - Search for the new excited charmed baryons
 - Branching fraction measurements of the Λ_c^+ and Ξ_c^0 decays
 - Study of Semi-leptonic decay $\Xi_c^0 \to \Xi^0 l^+ l^-$
- First BELLE + Belle II combined analysis of the $\Xi_c^0 \to \Xi^0 h^0$ decays rules out several theoretical approaches proposed to deal with non-factorizable amplitudes
- Belle II has started Run 2 data taking, expecting more physics results with a larger data sample

Thanks for your attention!

Comparison of available charm samples

Experiment	Machine	C.M.	Luminosity	N _{prod}	Efficiency	Characters
₿€SⅢ	BEPC-II (e ⁺ e ⁻)	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	2.9 $(8 \rightarrow 20)$ fb ⁻¹ 7.3 fb ⁻¹ 4.5 fb ⁻¹	$egin{array}{llllllllllllllllllllllllllllllllllll$	***	 extremely clean environment quantum coherence no boost, no time-dept analysis
Belle II	SuperKEKB (e ⁺ e ⁻)	10.58 GeV	0.4 ($ ightarrow$ 50) ab ⁻¹	$egin{array}{lll} D^0\colon 6 imes 10^8 \ (o 10^{11})\ D^+_{(s)}\colon 10^8 \ (o 10^{10})\ \Lambda^+_c\colon 10^7 \ (o 10^9) \end{array}$		 bigh-efficiency detection of neutrals good trigger efficiency time-dependent analysis
BELLE	KEKB (e ⁺ e ⁻)	10.58 GeV	$1 \operatorname{ab}^{-1}$	$D^{0,+}, D_s^+: 10^9$ $\Lambda_c^+: 10^8$ $\bigstar \bigstar \bigstar$	<i>O</i> (1-10%) ★★	© smaller cross-section than LHCb
LHCb THCp	LHC (<i>pp</i>)	7+8 TeV 13 TeV	$1+2 \text{ fb}^{-1}$ 6 fb ⁻¹ ($\rightarrow 23 \rightarrow 50$) fb ⁻¹	5×10^{12} 10^{13}	*	 very large production cross-section large boost, excellent time resolution dedicated trigger required

Here uses $\sigma(D^0 \overline{D}^0 @3.77 \,\text{GeV}) = 3.61$ nb, $\sigma(D^+ D^- @3.77 \,\text{GeV}) = 2.88$ nb, $\sigma(D_s^* D_s @4.17 \,\text{GeV}) = 0.967$ nb; $\sigma(c \bar{c} @10.58 \,\text{GeV}) = 1.3$ nb where each $c \bar{c}$ event averagely has $1.1/0.6/0.3 \ D^0/D^+/D_s^+$ yields; $\sigma(D^0 @CDF) = 13.3 \ \mu$ b, and $\sigma(D^0 @LHCb) = 1661 \ \mu$ b, mainly from *Int. J. Mod. Phys. A* **29**(2014)24,14300518.

- BESIII, Belle II, and LHCb experiments have their advantages for charm studies.
- They all are continuously collecting more datasets with increased luminosity in the foreseeable future.

Backup

Theoretical Predictions for $\Xi_c^0 \rightarrow \Xi^0 h^0$

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_c^0 \to \Xi^0 h^0$ decays. Branching fractions are given in units of 10^{-3} .

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Zou et al. [10]	pole	18.2	26.7	-	-0.77
Sharma, Verma [11]	\mathbf{CA}	-	-	-	-0.8
Cheng, Tseng [8]	\mathbf{CA}	17.1	-	-	0.54
Geng <i>et al.</i> [12]	$SU(3)_F$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng <i>et al.</i> [13]	$SU(3)_F$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
Zhao <i>et al.</i> [14]	$SU(3)_F$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Huang et al. [15]	$SU(3)_F$	2.56 ± 0.93	-	-	-0.23 ± 0.60
Hsiao et al. [16]	$SU(3)_F$	$6.0{\pm}1.2$	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	SU(3) _F -breaking	$3.6{\pm}1.2$	7.3 ± 3.2	-	-
Zhong et al. [17]	$SU(3)_F$	$1.13^{+0.59}_{-0.49}$	$1.56{\pm}1.92$	$0.683^{+3.272}_{-3.268}$	$0.50^{+0.37}_{-0.35}$
Zhong et al. [17]	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing et al. [18]	$SU(3)_F$	$1.30{\pm}0.51$	-	-	-0.28 ± 0.18

- [5] J. G. Körner and M. Krämer, Exclusive non-leptonic charm baryon decays, Z. Phys. C 55 (1992) 659.
- [6] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A. G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three-quark model: Evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998) 5632.
- [7] Q. P. Xu and A. N. Kamal, Cabibbo-favored nonleptonic decays of charmed baryons, Phys. Rev. D 46 (1992) 270.
- [8] H. Y. Cheng and B. Tseng, Cabibbo-allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48 (1993) 4188.
- P. Żenczykowski, Nonleptonic charmed-baryon decays: Symmetry properties of parity-violating amplitudes, Phys. Rev. D 50 (1994) 5787.
- [10] J. Q. Zou, F. R. Xu, G. B. Meng, and H. Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011.
- [11] K. K. Sharma and R. C. Verma, A study of weak mesonic decays of Λ_c and Ξ_C baryons on the basis of HQET results, Eur. Phys. J. C 7 (1999) 217.
- [12] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006.
- [13] C. Q. Geng, C. W. Liu, and T. H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19.
- [14] H. J. Zhao, Y. L. Wang, Y. K. Hsiao, and Y. Yu, A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry, JHEP 02 (2020) 165.
- [15] F. Huang, Z. P. Xing, and X. Z. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143.
- [16] Y. K. Hsiao, Y. L. Wang, and H. J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 35.
- [17] H. Zhong, F. Xu, Q. Wen and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP 02 (2023) 235.
- [18] Z. P. Xing, et al., Global analysis of measured and unmeasured hadronic two-body weak decays of antitriplet charmed baryons, Phys. Rev. D 108 (2023) 053004.

• Ref. [17] with breaking scenario suits best for \mathcal{B} measurements

Branching fractions of $\Xi_c^0 \to \Xi^0 h^0 (h^0 = \pi^0, \eta, \eta')$

JHEP 10 (2024) 045 Belle + Belle I 1.4/ab

Figure 6 shows the comparisons of our measurements with theoretical predictions from table 1. A recent result [17] based on the SU(3)_F-breaking model is consistent with each measured $\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$. The measured value of $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ is consistent with predictions based on the pole model [8, 10], CA [11], and SU(3)_F flavor symmetry [13] approaches. The central values of our measurements of the absolute branching fractions and asymmetry parameter of $\Xi_c^0 \to \Xi^0 \pi^0$, indicate that the covariant confined quark model [5, 6] is mildly disfavored for each result, and disagree with the predictions by more than 2σ for the following: (1) $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$ in refs. [8, 10, 15, 18]; (2) $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$ in refs. [9, 10, 13, 19, 20]; (3) $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$ in refs. [14, 19, 20]; and (4) $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ in refs. [7, 9, 17–20]. The results for the ratios, (8.1), (8.2), and (8.3), are independent of the Ξ_c^0 absolute branching fraction scale and may also be compared to theoretical models.

favoring predictions in SU(3) flavor symmetry_[JHEP 02, 235 (2023)]

Study of $\Omega(2012) \rightarrow \Xi(1530)\overline{K}$

Flatté-like function is

$$T_n(M) \equiv \frac{g_n k_n(M)}{|M - m_{\Omega(2012)^-} + \frac{1}{2} \sum_{j=2,3} g_j [\kappa_j(M) + ik_j(M)]|^2},$$

with those from Ref. [16]. The mass of $\Omega(2012)^{-1}$ is

$$m_{\Omega(2012)^{-}} = (2012.5 \pm 0.7 \pm 0.5) \text{ MeV}.$$

$$\mathcal{R}^{\Xi\pi\bar{K}}_{\Xi\bar{K}} = \frac{3\times\mathcal{B}(\Omega(2012)^- \to \Xi(1530)^0 K^- \to \Xi^-\pi^+ K^-)}{\mathcal{B}(\Omega(2012)^- \to \Xi^-\bar{K}^0) + \mathcal{B}(\Omega(2012)^- \to \Xi^0 K^-)},$$

The values of g_3 and g_2 are

 $g_3 = (38.9^{+31.1}_{-38.9} \pm 9.0) \times 10^{-2},$ $g_2 = (1.7^{+0.3}_{-0.3} \pm 0.3) \times 10^{-2}.$

The value of g_3/g_2 is

$$g_3/g_2 = (22.9^{+17.9}_{-22.4} \pm 2.2).$$

