The contributions of $\rho \to \omega \pi$ in $B \to \overline{D}^{(*)} \omega \pi$ decays

王文飞 (山西大学)

第二十一届全国重味物理和CP破坏研讨会 南华大学

2024-10-27

Based on JHEP 01 (2024) 047 with Yu-Shan Ren & Ai-Jun Ma

- > Contributions of the $ho(770, 1450)
 ightarrow \omega\pi$ in $B
 ightarrow \overline{D}{}^{(*)}\omega\pi$
- Results and discussions

The weak effective Hamiltonian:

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub} V_{uq}^* [C_1(\mu) Q_1^u(\mu) + C_2(\mu) Q_2^u(\mu)] - V_{tb} V_{tq}^* \left[\sum_{i=3}^{10} C_i(\mu) Q_i(\mu) \right] \right\} + \text{H.c.}, \quad (2)$$
where $q = d$, s. The functions Q_i $(i = 1, ..., 10)$ are the local four-quark operators:

The total amplitude within isobar approach:

PHYSICAL REVIEW DVOLUME 15, NUMBER 111 JUNE 1977High-statistics study of the reactions $\pi^-p \rightarrow K^-K^+n$ and $\pi^+n \rightarrow K^-K^+p$ at 6 GeV/c*A. J. Pawlicki, D. S. Ayres, D. Cohen, R. Diebold, S. L. Kramer, and A. B. Wicklund
Argonne National Laboratory, Argonne, Illinois 60439
(Received 23 December 1976; revised manuscript received 15 March 1977)

ambiguities. As discussed above, the *P* wave is consistent with the tail of the ρ^0 decaying into K^-K^+ , with a ρKK coupling that agrees with SU(3), including the sign. Only one of the ambiguous sol-

The weak effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \Big\{ V_{ub} V_{uq}^* [C_1(\mu) Q_1^u(\mu) + C_2(\mu) Q_2^u(\mu)] \\ - V_{tb} V_{tq}^* \Big[\sum_{i=3}^{10} C_i(\mu) Q_i(\mu) \Big] \Big\} + \text{H.c.}, \quad (2)$$
where $q = d$, s. The functions Q_i $(i = 1, ..., 10)$ are the local four-quark operators:

The total amplitude within isobar approach:

2.
$$\mathcal{A}_{total} = \sum_{i} \mathcal{A}_{NR}^{i} + \sum_{j} \mathcal{A}_{R}^{j}$$

MOTIVATIONS:

$$↔ B^+ → \overline{D}^{(*)0} ω π^+ \text{ and } B^0 → D^{(*)-} ω π^+ \text{ have been measured but without any theoretical predictions} [PRD64-092001, PRD74-012001, PRD92-012013]$$

• The $\omega \pi^+$ is related to the resonances $\rho(1450)$ and $\rho(770)$

★ Test the factorization hypothesis for B decays with $B^0 \rightarrow D^{(*)-}\omega \pi^+$ and $B_s^0 \rightarrow D_s^{*-} \omega \pi^+$ with the longitudinal polarization Γ_L/Γ [PLB89-105]

Wíth PQCD approach

$$\mathcal{A} = \langle (\omega \pi)_{P\text{-wave}} D^{(*)} | \mathcal{H}_{\text{eff}} | B \rangle$$
$$= \phi_B \otimes \mathcal{H} \otimes \phi_{\omega \pi}^{P\text{-wave}} \otimes \phi_{D^{(*)}}$$

$$\mathcal{L}_{\rho\omega\pi} = g_{\rho\omega\pi} \epsilon_{\mu\nu\alpha\beta} \partial^{\mu} \rho^{\nu} \partial^{\alpha} \omega^{\beta} \pi$$

$$\downarrow$$

$$\langle \omega(p_a, \lambda) \pi(p_b) | j_{\mu}(0) | 0 \rangle = i \epsilon_{\mu\nu\alpha\beta} \varepsilon^{\nu}(p_a, \lambda) p_b^{\alpha} p^{\beta} F_{\omega\pi}(s)$$

$$\downarrow$$

$$F_{\omega\pi}(s) = \frac{g_{\rho\omega\pi}}{f_{\rho}} \sum_{\rho_i} \frac{A_i e^{i\phi_i} m_{\rho_i}^2}{D_{\rho_i}(s)}$$

$$D_{\rho_i}(s) = m_{\rho_i}^2 - s - i\sqrt{s} \Gamma_{\rho_i}(s)$$

one has A = 1 and $\phi = 0$ for $\rho(770)$

[PRD92-014014, PRD105-074035, PRD108-092012]

$$\frac{d\mathcal{B}}{ds} = \tau_B \frac{s \, |\mathbf{p}_{\pi}|^3 |\mathbf{p}_D|^3}{24\pi^3 m_B^7} |\mathcal{A}|^2$$

$$|\mathbf{p}_{\pi}| = \frac{\sqrt{[s - (m_{\pi} + m_{\omega})^2] [s - (m_{\pi} - m_{\omega})^2]}}{2\sqrt{s}},$$
$$|\mathbf{p}_D| = \frac{\sqrt{[m_B^2 - (s + m_D)^2] [m_B^2 - (s - m_D)^2]}}{2\sqrt{s}},$$

$$\sum_{\lambda=0,\pm} \varepsilon^{\mu}(p,\lambda)\varepsilon^{\nu}(p,\lambda) = -g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{p^{2}},$$
$$\sum_{\lambda=0,\pm} |\epsilon_{\mu\nu\alpha\beta}p_{3}^{\mu}\varepsilon^{\nu}(p_{\omega},\lambda)p_{\pi}^{\alpha}p^{\beta}|^{2} = s |\mathbf{p}_{\pi}|^{2}|\mathbf{p}_{D}|^{2}(1-\cos^{2}\theta)$$

Six decay modes with large branching ratios (10^-3)

Decay modes	Units	\mathbf{PQCD}	Data [16]
$B^+ \to \bar{D}^0[\rho(770)^+ \to]\pi\pi^+$	%	$1.21\substack{+0.20 \\ -0.21}$	1.34 ± 0.18
$B^0 \rightarrow D^-[\rho(770)^+ \rightarrow]\pi\pi^+$	10^{-3}	$7.63\substack{+1.18 \\ -0.96}$	7.6 ± 1.2
$B_s^0 \to D_s^-[\rho(770)^+ \to]\pi\pi^+$	10^{-3}	$7.36\substack{+0.78 \\ -0.82}$	6.8 ± 1.4
$B^+ \to \bar{D}^{*0} [\rho(770)^+ \to] \pi \pi^+$	10^{-3}	$9.03\substack{+1.79 \\ -1.74}$	9.8 ± 1.7
$B^0 \to D^{*-}[\rho(770)^+ \to]\pi\pi^+$	10^{-3}	$8.15\substack{+1.46 \\ -1.45}$	6.8 ± 0.9
$B_s^0 \to D_s^{*-}[\rho(770)^+ \to]\pi\pi^+$	10^{-3}	$7.12\substack{+1.09 \\ -1.09}$	9.5 ± 2.0

[16] is PDG2022

Decay modes	\mathcal{B} (in 10^{-3})
$B^+ \to \bar{D}^0 [\rho(770)^+ \to] \omega \pi^+$	$1.42\substack{+0.16+0.15+0.11+0.10\\-0.16-0.13-0.09-0.10}$
$B^+ \to \bar{D}^0 [\rho(1450)^+ \to] \omega \pi^+$	$0.96\substack{+0.11+0.09+0.08+0.40\\-0.11-0.09-0.08-0.40}$
$B^0 \to D^-[\rho(770)^+ \to]\omega\pi^+$	$0.80\substack{+0.06+0.12+0.06+0.07\\-0.06-0.09-0.02-0.07}$
$B^0 \rightarrow D^-[\rho(1450)^+ \rightarrow]\omega\pi^+$	$0.52\substack{+0.03+0.06+0.03+0.22\\-0.03-0.06-0.03-0.22}$
$B_s^0 \to D_s^-[\rho(770)^+ \to]\omega\pi^+$	$0.88\substack{+0.05+0.07+0.00+0.06\\-0.05-0.07-0.01-0.06}$
$B_s^0 \to D_s^-[\rho(1450)^+ \to]\omega\pi^+$	$0.59\substack{+0.03+0.05+0.00+0.25\\-0.03-0.04-0.00-0.25}$

Decay modes	${\cal B}~({ m in}~10^{-3})$	Γ_L/Γ
$B^+ \to \bar{D}^{*0}[\rho(770)^+ \to]\omega\pi^+$	$1.21\substack{+0.17+0.09+0.05+0.07\\-0.17-0.09-0.03-0.07}$	$0.74\substack{+0.02\\-0.02}$
$B^+ \to \bar{D}^{*0} [\rho(1450)^+ \to] \omega \pi^+$	$0.87\substack{+0.12+0.07+0.03+0.37\\-0.12-0.07-0.02-0.37}$	$0.67\substack{+0.02\\-0.02}$
$B^0 \rightarrow D^{*-}[\rho(770)^+ \rightarrow]\omega\pi^+$	$1.20\substack{+0.18+0.09+0.02+0.07\\-0.18-0.08-0.01-0.07}$	$0.68\substack{+0.02\\-0.02}$
$B^0 \rightarrow D^{*-}[\rho(1450)^+ \rightarrow]\omega\pi^+$	$0.89\substack{+0.13+0.06+0.02+0.38\\-0.13-0.06-0.02-0.38}$	$0.63\substack{+0.01 \\ -0.01}$
$B_s^0 \to D_s^{*-}[\rho(770)^+ \to]\pi\pi^+$	$1.03\substack{+0.11+0.08+0.00+0.05\\-0.11-0.08-0.00-0.05}$	$0.65\substack{+0.01 \\ -0.01}$
$B_s^0 \to D_s^{*-}[\rho(1450)^+ \to]\pi\pi^+$	$0.77\substack{+0.08+0.06+0.00+0.32\\-0.08-0.06-0.00-0.32}$	$0.59\substack{+0.01 \\ -0.01}$

Belle: PRD92-012013
$$\begin{bmatrix} \mathcal{B} = (1.48 \pm 0.27^{+0.15+0.21}_{-0.09-0.56}) \times 10^{-3} \\ \mathcal{B} = (1.07^{+0.15+0.06+0.40}_{-0.31-0.13-0.02}) \times 10^{-3} \end{bmatrix}$$

$$\mathcal{L}_{\rho\omega\pi} = g_{\rho\omega\pi} \epsilon_{\mu\nu\alpha\beta} \partial^{\mu} \rho^{\nu} \partial^{\alpha} \omega^{\beta} \pi$$

$$\downarrow$$

$$\langle \omega(p_a, \lambda) \pi(p_b) | j_{\mu}(0) | 0 \rangle = i \epsilon_{\mu\nu\alpha\beta} \varepsilon^{\nu}(p_a, \lambda) p_b^{\alpha} p^{\beta} F_{\omega\pi}(s)$$

$$\downarrow$$

$$F_{\omega\pi}(s) = \frac{g_{\rho\omega\pi}}{f_{\rho}} \sum_{\rho_i} \frac{A_i e^{i\phi_i} m_{\rho_i}^2}{D_{\rho_i}(s)}$$

$$D_{\rho_i}(s) = m_{\rho_i}^2 - s - i\sqrt{s} \Gamma_{\rho_i}(s)$$

one has A = 1 and $\phi = 0$ for $\rho(770)$

$$g_{\rho\omega\pi} = 16.0 \pm 2.0 \; {\rm GeV^{-1}}$$

$$g_{\rho\pi\pi} \approx 6.0$$

$$g_{\rho\omega\pi} = 16.0 \pm 2.0 \; {\rm GeV^{-1}}$$

$$F_{\omega\pi}(s) = \frac{g_{\rho\omega\pi}}{f_{\rho}} \sum_{\rho_i} \frac{A_i e^{i\phi_i} m_{\rho_i}^2}{D_{\rho_i}(s)}$$

The weight A_1 in Eq. (2.23) for the subprocess $\rho(1450) \rightarrow \omega \pi$ moves a lot in the literature, it has been measured to be 0.584 ± 0.003 and 0.164 ± 0.003 in [31], 0.175 ± 0.016 , 0.137 ± 0.006 and 0.251 ± 0.006 in [28], 0.26 ± 0.01 and 0.11 ± 0.01 in [27]

[31]:PRD108-092012 [28]:PRD94-112001 [27]:PRD88-054013

$$g_{
ho\omega\pi} = 16.0 \pm 2.0 \; {
m GeV^{-1}}$$

$$F_{\omega\pi}(s) = \frac{g_{\rho\omega\pi}}{f_{\rho}} \sum_{\rho_i} \frac{A_i e^{i\phi_i} m_{\rho_i}^2}{D_{\rho_i}(s)}$$

$$A_1 = 0.171 \pm 0.036$$

$$\begin{split} A_1 &= \frac{g_{\rho(1450)\omega\pi} f_{\rho(1450)} m_{\rho(770)}}{g_{\rho(770)\omega\pi} f_{\rho(770)} m_{\rho(1450)}} \\ f_{\rho(1450)} g_{\rho(1450)\omega\pi} &= \sqrt{12\pi f_{\rho(1450)}^2 \mathcal{B}(\rho(1450) \to \omega\pi) \Gamma_{\rho(1450)} / p_c^3} \\ f_{\rho(1450)}^2 \mathcal{B}(\rho(1450) \to \omega\pi) = 0.011 \pm 0.003 \quad \text{PRD64-092001 CLE0} \end{split}$$

★ Test the factorization hypothesis for B decays with $B^0 \rightarrow D^{(*)-}\omega\pi^+$ and $B_s^0 \rightarrow D_s^{*-}\omega\pi^+$ with the longitudinal polarization Γ_L/Γ [PLB89-105]

* Test the factorization hypothesis for B decays with $B^0 \rightarrow D^{(*)-} \omega \pi^+$ and $B_s^0 \rightarrow D_s^{*-} \omega \pi^+$ with the longitudinal polarization Γ_L/Γ [PLB89-105]

$$B_s^0 \to D_s^{*-}[\rho(770)^+ \to]\pi\pi^+$$

 $B_s^0 \to D_s^{*-}[\rho(1450)^+ \to]\pi\pi^+$

Introduction of the 3-body B decays / Virtual contributions

- ✓ Contributions of the $\rho(770, 1450) \rightarrow \omega \pi$ in $B \rightarrow \overline{D}^{(*)} \omega \pi$
- Results and discussions

Introduction of the 3-body B decays / Virtual contributions

- ✓ Contributions of the $\rho(770, 1450) \rightarrow \omega \pi$ in $B \rightarrow \overline{D}^{(*)} \omega \pi$
- Results and discussions

Thank You !