Charmed Baryon Decays from the Perspective of Topological Diagrams

Huiling Zhong

Collaborated with Hai-Yang Cheng, Fanrong Xu

Jinan University

HFCPV 2024, 27 Oct., 2024

arXiv:2401.15926v3 arXiv:2404.01350v2 arXiv:2410.04675v1

- **1** Introduction
- **2** Formalism
- **3** Numerical Results
- **4** Summary

Introduction

Experimental Progress in 2024

• BESIII

 $\alpha(\Lambda_c^+ \to \Xi^0 K^+) = 0.01 \pm 0.16 \pm 0.03,$

Phys. Rev. Lett. 132, 031801(2024)

$$\begin{split} \mathcal{B}(\Lambda_c^+ \to p\pi^0) &= (1.56^{+0.72}_{-0.58} \pm 0.20) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to n\pi^+) &= (6.6 \pm 1.3) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta) &= (1.63 \pm 0.31 \pm 0.11) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta) &= (1.63 \pm 0.31 \pm 0.11) \times 10^{-3}, \end{split}$$

• Belle

$$\begin{split} \mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) &= (6.9 \pm 0.3 (\text{stat}) \pm 0.5 (\text{syst}) \pm 1.5 (\text{norm})) \times 10^{-3}, \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) &= (1.6 \pm 0.2 (\text{stat}) \pm 0.2 (\text{syst}) \pm 0.4 (\text{norm})) \times 10^{-3}, \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') &= (1.2 \pm 0.3 (\text{stat}) \pm 0.1 (\text{syst}) \pm 0.3 (\text{norm})) \times 10^{-3}, \\ \alpha(\Xi_c^0 \to \Xi^0 \pi^0) &= -0.90 \pm 0.15 (\text{stat}) \pm 0.23 (\text{syst}). \end{split}$$

arXiv:2406.04642 [hep-ex]

• LHCb

$$\begin{split} &\alpha(\Lambda_c^+ \to \Lambda \pi^+) = -0.782 \pm 0.009 \pm 0.004, \\ &\alpha(\Lambda_c^+ \to \Lambda K^+) = -0.569 \pm 0.059 \pm 0.028, \\ &\alpha(\Lambda_c^+ \to p K_S^0) = -0.744 \pm 0.012 \pm 0.009, \\ &\beta(\Lambda_c^+ \to \Lambda \pi^+) = 0.368 \pm 0.019 \pm 0.008, \\ &\beta(\Lambda_c^+ \to \Lambda K^+) = 0.35 \pm 0.12 \pm 0.04, \\ &\gamma(\Lambda_c^+ \to \Lambda \pi^+) = 0.502 \pm 0.016 \pm 0.006, \\ &\gamma(\Lambda_c^+ \to \Lambda K^+) = -0.743 \pm 0.067 \pm 0.024, \\ &\Delta(\Lambda_c^+ \to \Lambda \pi^+) = 0.633 \pm 0.036 \pm 0.013, \\ &\Delta(\Lambda_c^+ \to \Lambda K^+) = 2.70 \pm 0.17 \pm 0.04, \end{split}$$

arXiv:2409.02759 [hep-ex]

Introduction

Theoretical progress

- Dynamical model calculations
 - Quark model
 - Pole model
 - Rescattering
 - QCD sum rules
 - •
- Fit

C. Q. Geng, C. W. Liu and T. H. Tsai, Phys. Lett. B 794, 19-28 (2019) . H. Zhong, F. Xu, Q. Wen and Y. Gu, JHEP 02, 235 (2023). Z. P. Xing, X. G. He, F. Huang and C. Yang, Phys. Rev. D 108, no.5, 053004(2023).

• The irreducible SU(3) approach (IRA)

The topological diagram approach (TDA)

 Y. Kohara, Phys. Rev. D 44, 2799-2802 (1991).
 X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 355

 L. L. Chau, H. Y. Cheng and B. Tseng, Phys. Rev. D 54, 2132 (1996).
 Y. K. Hsiao, Y. L. Wang and H. J. Zhao, JHEP 09, 035 (2022).

X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020). Y. K. Hsiao, Y. L. Wang and H. J. Zhao, JHEP 09, 035 (2022). H. J. Zhao, Y. L. Wang, Y. K. Hsiao and Y. Yu, JHEP 02, 165 (2020). Y. K. Hsiao, Q. Yi, S. T. Cai and H. J. Zhao, Eur. Phys. J. C 80, no.11, 1067 (2020).

Topological diagrams

From Topological diagrams to decay amplitudes

 $T(\mathcal{B}_c)^{ij} H_l^{km} (\mathcal{B}_8)_{ijk} (M)_m^l$

 $P_1(\mathcal{B}_c)^{ij} H_m^{mk}(\mathcal{B}_8)_{ijl} (M)_k^l$

From Topological diagrams to decay amplitudes

 $\mathcal{B}_c(\bar{3}) \to \mathcal{B}(8)P(8+1)$

The SU(3) flavor representations:

$$\begin{split} (\mathcal{B}_{c})_{i} &= \left(\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}\right) \\ (\mathcal{B}_{8})_{j}^{i} &= \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \\ & \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \\ \end{pmatrix} \\ M_{j}^{i} &= \begin{pmatrix} \frac{\pi^{0} + \eta_{q}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-\pi^{0} + \eta_{q}}{\sqrt{2}} & K^{0} \\ K^{-} & \overline{K}^{0} & \eta_{s} \end{pmatrix} \qquad \text{Then}$$

$$(\mathcal{B}_c)^{ij} = \epsilon^{ijk} (\mathcal{B}_c)_k$$
$$(\mathcal{B}_8)_{ijk} = \epsilon_{ijl} (\mathcal{B}_8^T)_k^l$$

$$\begin{aligned} (H_{\overline{6}})_{3}^{31} &= -(H_{\overline{6}})_{3}^{13} = (H_{\overline{6}})_{2}^{12} = -(H_{\overline{6}})_{2}^{21} = \frac{1}{2}(\lambda_{s} - \lambda_{d}), \\ (H_{15})_{3}^{31} &= (H_{15})_{3}^{13} = -(H_{15})_{2}^{12} = -(H_{15})_{2}^{21} = \frac{1}{2}(\lambda_{s} - \lambda_{d}), \\ (H_{3p})^{1} &= (H_{3t})^{1} = -\frac{1}{4}\lambda_{b}. \end{aligned}$$

The coefficient tensor *H* :

$$H_k^{ij} = \frac{1}{2} \left[(H_{15})_k^{ij} + (H_{\overline{6}})_k^{ij} \right] + \delta_k^j \left(\frac{3}{8} (H_{3p})^i - \frac{1}{8} (H_{3t})^i \right) + \delta_k^i \left(\frac{3}{8} (H_{3t})^j - \frac{1}{8} (H_{3p})^j \right)$$

From Topological diagrams to decay amplitudes

before

 $\begin{aligned} \mathcal{A}_{\text{TDA}} &= T(\mathcal{B}_{c})^{ij} H_{l}^{km} M_{m}^{l} \left[b_{1} (\mathcal{B}_{8})_{ijk} + \overline{b_{2} (\mathcal{B}_{8})_{ikj}} + b_{3} (\mathcal{B}_{8})_{jki} \right] \\ &+ C(\mathcal{B}_{c})^{ij} H_{k}^{ml} M_{m}^{k} \left[b_{4} (\mathcal{B}_{8})_{ijl} + \overline{b_{5} (\mathcal{B}_{8})_{ilj}} + b_{6} (\mathcal{B}_{8})_{jli} \right] \\ &+ C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} M_{i}^{m} \left[b_{7} (\mathcal{B}_{8})_{klj} + \overline{b_{8} (\mathcal{B}_{8})_{kjl}} + b_{9} (\mathcal{B}_{8})_{ljk} \right] \\ &+ E_{1} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{l}^{m} \left[b_{10} (\mathcal{B}_{8})_{jkm} + b_{11} (\mathcal{B}_{8})_{jmk} + b_{12} (\mathcal{B}_{8})_{kmj} \right] \\ &+ E_{2} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{k}^{m} \left[b_{13} (\mathcal{B}_{8})_{jlm} + b_{14} (\mathcal{B}_{8})_{jml} + b_{15} (\mathcal{B}_{8})_{lmj} \right] \\ &+ E_{3} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{j}^{m} \left[b_{16} (\mathcal{B}_{8})_{klm} + \overline{b_{17} (\mathcal{B}_{8})_{kml}} + b_{18} (\mathcal{B}_{8})_{lmk} \right] \\ &+ E_{h} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{m}^{m} \left[b_{19} (\mathcal{B}_{8})_{jkl} + \overline{b_{20} (\mathcal{B}_{8})_{jlk}} + b_{21} (\mathcal{B}_{8})_{klj} \right], \end{aligned}$

flavor symmetry

KPW theorem

11 independent TDA amplitudes

From Topological diagrams to decay amplitudes

 $\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_c)^{ij} H_l^{km} \left(\mathcal{B}_8 \right)_{ijk} \left(M \right)_m^l$ now $+ C(\mathcal{B}_c)^{ij} H_k^{ml} (\mathcal{B}_8)_{ijl} (M)_m^k + C'(\mathcal{B}_c)^{ij} H_m^{kl} (\mathcal{B}_8)_{klj} (M)_i^m$ $+ E_{1A}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(\mathcal{B}_{8})_{ikm}(M)_{l}^{m} + E_{1S}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(M)_{l}^{m} | (\mathcal{B}_{8})_{imk} + (\mathcal{B}_{8})_{kmi} | (\mathcal{B}_{8})_{imk} + (\mathcal{B}_{8})_{imk} | (\mathcal{B}_{8})_{imk} + (\mathcal{B}_{8})_{imk}$ $+ E_{2A}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(\mathcal{B}_{8})_{jlm}(M)_{k}^{m} + E_{2S}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(M)_{k}^{m} |(\mathcal{B}_{8})_{jml} + (\mathcal{B}_{8})_{lmj}|$ $E_{2S} = -E_{1S}.$ $E_{2A} = -E_{1A},$ $+ E_{3}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(\mathcal{B}_{8})_{klm}(M)_{i}^{m} + E_{h}(\mathcal{B}_{c})^{ij}H_{i}^{kl}(\mathcal{B}_{8})_{klj}(M)_{m}^{m}$ + $P_h(\mathcal{B}_c)^{ij} H_m^{mk}(\mathcal{B}_8)_{ijk}(M)_l^l + P_1(\mathcal{B}_c)^{ij} H_m^{mk}(\mathcal{B}_8)_{ijl}(M)_k^l$ $+ P_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (\mathcal{B}_{8})_{kil} (M)_{i}^{l} + P_{2S}(\mathcal{B}_{c})^{ij} H_{m}^{mk} (M)_{i}^{l} [(\mathcal{B}_{8})_{kli} + (\mathcal{B}_{8})_{ilk}]$ $+ P'_{h}(\mathcal{B}_{c})^{ij}H^{km}_{m}(\mathcal{B}_{8})_{ijk}(M)^{l}_{l} + P'_{1}(\mathcal{B}_{c})^{ij}H^{km}_{m}(\mathcal{B}_{8})_{ijl}(M)^{l}_{k}$ $+ P_{2A}^{\prime}(\mathcal{B}_{c})^{ij}H_{m}^{km}(\mathcal{B}_{8})_{kil}(M)_{i}^{l} + P_{2S}^{\prime}(\mathcal{B}_{c})^{ij}H_{m}^{km}(M)_{i}^{l}[(\mathcal{B}_{8})_{kli} + (\mathcal{B}_{8})_{ilk}],$

Redefinition: $\tilde{T} = T - E_{1S}$, $\tilde{C} = C + E_{1S}$, $\tilde{C}' = C' - 2E_{1S}$, $\tilde{E}_1 = E_{1A} + E_{1S} - E_3$, $\tilde{E}_h = E_h + 2E_{1S}$. 5 tilde TDA amplitudes

Decay amplitudes (tree)

Channel	TDA
$\Lambda_c^+\to\Lambda\pi^+$	$\frac{1}{\sqrt{6}}(-4\tilde{T}+\tilde{C}'+\tilde{E}_1)$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$\frac{1}{\sqrt{2}}(-\tilde{C}'-\tilde{E}_1)$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	$\frac{1}{\sqrt{2}}(\tilde{C}'+\tilde{E}_1)$
$\Lambda_c^+ \to \Sigma^+ \eta_8$	$\frac{1}{\sqrt{6}}(-\tilde{C}'+\tilde{E}_1)$
$\Lambda_c^+ \to \Sigma^+ \eta_1$	$\frac{1}{\sqrt{3}}(-\tilde{C}'+\tilde{E}_1-3\tilde{E}_h)$
$\Lambda_c^+ \to \Xi^0 K^+$	\tilde{E}_1
$\Lambda_c^+ \to p \bar{K}^0$	2Č
$\Xi_c^0\to\Lambda\bar{K}^0$	$\frac{1}{\sqrt{6}}(2\tilde{C}-\tilde{C}'-\tilde{E}_1)$
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	$\frac{1}{\sqrt{2}}(2\tilde{C}+\tilde{C}'+\tilde{E}_1)$
$\Xi_c^0 \to \Sigma^+ K^-$	$-\tilde{E}_1$
$\Xi_c^0 \to \Xi^0 \pi^0$	$\frac{1}{\sqrt{2}}(-\tilde{C}')$
$\Xi_c^0 \to \Xi^0 \eta_8$	$\frac{1}{\sqrt{6}}(\tilde{C}'+2\tilde{E}_1)$
$\Xi_c^0\to \Xi^0\eta_1$	$\frac{1}{\sqrt{3}}(\tilde{C}' - \tilde{E}_1 + 3\tilde{E}_h)$
$\Xi_c^0 \to \Xi^- \pi^+$	$2\tilde{T}$
$\Xi_c^+ \to \Sigma^+ \overline{K}^0$	$-2\tilde{C}-\tilde{C}'$
$\Xi_c^+ \to \Xi^0 \pi^+$	$-2\tilde{T}+\tilde{C}'$

•	SCS	Channel	TDA
		$\Lambda_c^+ \to \Lambda K^+$	$\frac{1}{\sqrt{6}}(-4\tilde{T}+\tilde{C}'-2\tilde{E}_1)$
		$\Lambda_c^+ \to \Sigma^0 K^+$	$\frac{1}{\sqrt{2}}(-\tilde{C}')$
		$\Lambda_c^+ \to \Sigma^+ K^0$	$-\tilde{C}'$
		$\Lambda_c^+ \to p \pi^0$	$\frac{1}{\sqrt{2}}(2\tilde{C}+\tilde{C}'+\tilde{E}_1)$
		$\Lambda_c^+ \to p\eta_8$	$\frac{1}{\sqrt{6}}(-6\tilde{C}-\tilde{C}'+\tilde{E}_1)$
		$\Lambda_c^+ \to p\eta_1$	$\frac{1}{\sqrt{2}}(-\tilde{C}'+\tilde{E}_1-3\tilde{E}_h)$
		$\Lambda_c^+ \to n\pi^+$	$-2\tilde{T}+\tilde{C}'+\tilde{E}_1$
		$\Xi_c^0 \to \Lambda \pi^0$	$\frac{1}{2\sqrt{3}}(2\tilde{C}+2\tilde{C}'-\tilde{E}_1)$
		$\Xi_c^0 \to \Lambda \eta_8$	$\frac{1}{2}(-2\tilde{C}-\tilde{E}_1)$
		$\Xi_c^0 \to \Lambda \eta_1$	$\frac{1}{\sqrt{2}}(-\tilde{C}'+\tilde{E}_1-3\tilde{E}_h)$
		$\Xi_c^0\to\Sigma^0\pi^0$	$\frac{1}{2}(2\tilde{C}+\tilde{E}_{1})$
		$\Xi_c^0\to\Sigma^0\eta_8$	$\frac{1}{2\sqrt{3}}(-6\tilde{C}-2\tilde{C}'-\tilde{E}_1)$
		$\Xi_c^0\to\Sigma^0\eta_1$	$\frac{1}{\sqrt{6}}(\tilde{C}'-\tilde{E}_1+3\tilde{E}_h)$
		$\Xi_c^0\to \Sigma^+\pi^-$	\tilde{E}_1
		$\Xi_c^0 \to \Sigma^- \pi^+$	$-2\tilde{T}$
		$\Xi_c^0 \to \Xi^0 K^0$	$\tilde{C}'_{1} + \tilde{E}_{1}$
		$\Xi_c^0 \to \Xi^- K^+$	2T
		$\Xi_c^0 \to pK^-$ $\Xi_c^0 \to p\bar{k}^0$	$-E_1$ $\tilde{C}' \tilde{E}$
		$\Xi_c^+ \to \Lambda \pi^+$	$\frac{-C}{2} = E_1$ $\frac{1}{2}(2\tilde{T} - 2\tilde{C}' + \tilde{E}_1)$
		$\Xi_c^+ \to \Sigma^0 \pi^+$	$\frac{1}{\sqrt{6}} \left(2\tilde{T} - \tilde{E}_{1} \right)$
		$\Xi_c^+ \to \Sigma^+ \pi^0$	$\frac{1}{\sqrt{2}}(-2\tilde{L}-L_1)$
		$\Xi_{c}^{+} \rightarrow \Sigma^{+} n_{\circ}$	$\frac{1}{\sqrt{2}} \left(\frac{-2C + E_1}{2C + \tilde{E}} \right)$
		$\Xi^+ \rightarrow \Sigma^+ n$	$\frac{1}{\sqrt{6}}\left(0C + 2C + L_1\right)$
		$ =_{c} \qquad = \eta_{1} $ $ =_{c} =_{c} = \eta_{1} $	$\frac{1}{\sqrt{3}}(-C + E_1 - 3E_h)$
		$\Xi_c \rightarrow \Xi^{-} \Lambda^{-}$ $\Xi^+ \rightarrow p \bar{K}^0$	$-2I + C + E_1$ $-\tilde{C}'$
		$-c \rightarrow ph$	-0

• DCS

Channel	TDA
$\Lambda_c^+ \to p K^0$	$2\tilde{C} + \tilde{C}'$
$\Lambda_c^+ \to nK^+$	$2\tilde{T} - \tilde{C}'$
$\Xi_c^0 \to \Lambda K^0$	$\frac{1}{\sqrt{6}}(2\tilde{C}+2\tilde{C}'+2\tilde{E}_1)$
$\Xi_c^0 \to \Sigma^0 K^0$	$\frac{1}{\sqrt{2}}(2\tilde{C})$
$\Xi_c^0 \to \Sigma^- K^+$	$2\tilde{T}$
$\Xi_c^0 \to p\pi^-$	$-\tilde{E}_1$
$\Xi_c^0 \to n\pi^0$	$\frac{1}{\sqrt{2}}(\tilde{E}_1)$
$\Xi_c^0 \to n\eta_8$	$\frac{1}{\sqrt{6}}(-2\tilde{C}'-\tilde{E}_1)$
$\Xi_c^0 \to n\eta_1$	$\frac{1}{\sqrt{3}}(\tilde{C}' - \tilde{E}_1 + 3\tilde{E}_h)$
$\Xi_c^+ \to \Lambda K^+$	$\frac{1}{\sqrt{6}}(-2\tilde{T}+2\tilde{C}'+2\tilde{E}_1)$
$\Xi_c^+ \to \Sigma^0 K^+$	$\frac{1}{\sqrt{2}}(2\tilde{T})$
$\Xi_c^+ \to \Sigma^+ K^0$	$-2\tilde{C}$
$\Xi_c^+ \to p \pi^0$	$\frac{1}{\sqrt{2}}(-\tilde{E}_1)$
$\Xi_c^+ \to p\eta_8$	$\frac{1}{\sqrt{6}}(-2\tilde{C}'-\tilde{E}_1)$
$\Xi_c^+ \to p\eta_1$	$\frac{1}{\sqrt{3}}(\tilde{C}'-\tilde{E}_1+3\tilde{E}_h)$
$\Xi_c^+ \to n\pi^+$	$-\tilde{E}_1$

Equivalence between TDA and IRA

(1) Writing down the TDA and IRA amplitudes and then comparing them to sort out their relations

 $\begin{aligned} \mathcal{A}_{\text{IRAa}} &= a_1 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l + a_2 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + a_3 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_l^j M_k^l \\ &+ a_4 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^i M_k^l + a_5 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^l + a_5 \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l \\ &+ a_{\overline{7}} \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + \overline{a_8} \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_j^l M_k^l \\ &+ a_{\overline{10}} \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^i + b_1 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^j \left(\mathcal{B}_8 \right)_j^i M_l^l + b_2 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^j \left(\mathcal{B}_8 \right)_j^l M_l^i \\ &+ b_3 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^i \left(\mathcal{B}_8 \right)_j^l M_l^j + b_4 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^l \left(\mathcal{B}_8 \right)_j^i M_l^j \\ &\tilde{T} = \frac{1}{2} \left(-a_2 + a_4 + a_9 \right), \qquad \tilde{C} = \frac{1}{2} \left(a_2 - a_4 + a_9 \right), \\ \tilde{C}' = -a_2 - a_5, \qquad \tilde{E}_1 = a_3 + a_5, \qquad \tilde{E}_h = -a_1 + a_5. \end{aligned}$

(2) Make a direct transformation from the TDA to IRA

 $\mathcal{A}_{\text{TDA}}^{\text{tree}} = (T+C)(\mathcal{B}_{c})_{i} (H_{15})_{m}^{jl} (\mathcal{B}_{8})_{j}^{i} M_{l}^{m} - E_{h}(\mathcal{B}_{c})_{i} (H_{\overline{6}})_{l}^{ij} (\mathcal{B}_{8})_{j}^{l} M_{m}^{m}$ $+ (T-C-C'-2E_{1S})(\mathcal{B}_{c})_{i} (H_{\overline{6}})_{m}^{jl} (\mathcal{B}_{8})_{j}^{i} M_{l}^{m} - C'(\mathcal{B}_{c})_{i} (H_{\overline{6}})_{m}^{ij} (\mathcal{B}_{8})_{j}^{l} M_{l}^{m}$ $+ (E_{1A}-E_{1S}-E_{3})(\mathcal{B}_{c})_{i} (H_{\overline{6}})_{j}^{il} (\mathcal{B}_{8})_{m}^{j} M_{l}^{m} + 2E_{1S}(\mathcal{B}_{c})_{i} (H_{\overline{6}})_{m}^{jl} (\mathcal{B}_{8})_{j}^{m} M_{l}^{i}$

$$a_1 = -E_h, \quad a_2 = -C', \quad a_3 = E_{1A} - E_{1S} - E_3, \\ a_4 = T - C - C' - 2E_{1S}, \quad a_5 = 2E_{1S}, \quad a_9 = T + C$$

$$(\mathcal{B}_c)^{ij} = \epsilon^{ijk} (\mathcal{B}_c)_k$$

 $(\mathcal{B}_8)_{ijk} = \epsilon_{ijl} (\mathcal{B}_8^T)_k^l$
 H_k^{ij}

Fitting scheme

The tidle TDA parameters:

 $|\tilde{T}|_{S}e^{i\delta_{S}^{\tilde{T}}}, \quad |\tilde{C}|_{S}e^{i\delta_{S}^{\tilde{C}}}, \quad |\tilde{C}'|_{S}e^{i\delta_{S}^{\tilde{C}'}}, \quad |\tilde{E}_{1}|_{S}e^{i\delta_{S}^{E_{1}}}, \quad |\tilde{E}_{h}|_{S}e^{i\delta_{S}^{E_{h}}},$ $|\tilde{T}|_P e^{i\delta_P^{\tilde{T}}}, \quad |\tilde{C}|_P e^{i\delta_P^{\tilde{C}}}, \quad |\tilde{C}'|_P e^{i\delta_P^{\tilde{C}'}}, \quad |\tilde{E}_1|_P e^{i\delta_P^{\tilde{E}_1}}, \quad |\tilde{E}_h|_P e^{i\delta_P^{\tilde{E}_h}}.$ The tidle IRA parameters: $|\tilde{f}^a|_S e^{i\delta_S^{\tilde{f}^a}}, |\tilde{f}^b|_S e^{i\delta_S^{\tilde{f}^b}}, |\tilde{f}^c|_S e^{i\delta_S^{\tilde{f}^c}}, |\tilde{f}^d|_S e^{i\delta_S^{\tilde{f}^d}}, |\tilde{f}^e|_S e^{i\delta_S^{\tilde{f}^e}},$ $|\tilde{f}^a|_P e^{i\delta_P^{\tilde{f}^a}}, |\tilde{f}^b|_P e^{i\delta_P^{\tilde{f}^b}}, |\tilde{f}^c|_P e^{i\delta_P^{\tilde{f}^c}}, |\tilde{f}^d|_P e^{i\delta_P^{\tilde{f}^d}}, |\tilde{f}^e|_P e^{i\delta_P^{\tilde{f}^e}}.$

19 parameters were left after an overall phase shift, then we conducted an minimum χ^2 fit under:

Scheme I: Without the recent Belle data on $\Xi_c^0 \rightarrow \Xi^0 \pi^0$, η , η' (3 $Br + 1 \alpha$)

Scheme II: All the currently available data included (38 observables) in total)

The χ^2 is defined as $\chi^2 = [\mathcal{O}_{\text{theor}}(c_i) - \mathcal{O}_{\text{expt}}]^T \Sigma^{-1} [\mathcal{O}_{\text{theor}}(c_i) - \mathcal{O}_{\text{expt}}]$

diagonal!

The best fit points

14 14	Scheme	I	Scheme	II
_	TDA	IRA	TDA	IRA
χ^2	34.31	33.21	59.17	57.08
$\chi^2/d.o.f.$	2.29	2.21	3.11	3.00

4 sets!

• Scheme I

• Scheme II

	$ X_i _S$	$ X_i _P$	$\delta^{X_i}_S$	$\delta_P^{X_i}$		$ X_i _S$	$ X_i _P$	$\delta_S^{X_i}$	$\delta_P^{X_i}$
-	$(10^{-2}G)$	$_{\rm F}~{ m GeV^2})$	(in ra	dian)	S.	$(10^{-2}G)$	$_{F}~{ m GeV^2})$	(in ra	dian)
\tilde{T}	4.25 ± 0.11	12.43 ± 0.30	—	2.40 ± 0.04	\tilde{T}	4.22 ± 0.10	12.50 ± 0.28	-	2.42 ± 0.04
\tilde{C}	3.08 ± 0.52	11.57 ± 1.00	3.02 ± 0.12	-0.77 ± 0.20	\tilde{C}	2.40 ± 0.66	12.70 ± 0.71	2.88 ± 0.59	-0.57 ± 0.15
\tilde{C}'	5.39 ± 0.38	18.79 ± 0.86	-0.03 ± 0.05	2.23 ± 0.11	\tilde{C}'	5.26 ± 0.35	19.04 ± 0.85	-0.02 ± 0.05	2.32 ± 0.11
$\tilde{E_1}$	2.90 ± 0.19	10.22 ± 0.50	-2.80 ± 0.05	1.86 ± 0.10	$ ilde{E_1}$	2.86 ± 0.19	10.20 ± 0.50	-2.80 ± 0.05	1.83 ± 0.09
$\tilde{E_h}$	4.06 ± 0.53	13.82 ± 1.93	2.66 ± 0.12	-1.90 ± 0.20	$\tilde{E_h}$	3.07 ± 0.47	11.80 ± 1.42	2.87 ± 0.09	-1.75 ± 0.19
\tilde{f}^a	4.10 ± 0.52	16.18 ± 2.34	-	1.72 ± 0.12	$ ilde{f}^a$	3.16 ± 0.43	10.74 ± 1.73	-	1.68 ± 0.15
\tilde{f}^b	7.00 ± 1.36	24.52 ± 1.72	-2.78 ± 0.11	-0.30 ± 0.19	$ ilde{f}^b$	7.52 ± 0.30	23.27 ± 0.69	-2.98 ± 0.09	-0.56 ± 0.10
\tilde{f}^c	2.91 ± 0.19	10.26 ± 0.49	-2.36 ± 0.11	2.29 ± 0.14	$ ilde{f}^c$	2.86 ± 0.19	10.19 ± 0.49	-2.51 ± 0.09	2.13 ± 0.12
\widetilde{f}^d	1.59 ± 1.19	7.50 ± 3.87	-2.89 ± 0.40	0.25 ± 0.40	$ ilde{f}^d$	2.34 ± 0.20	4.30 ± 0.65	3.02 ± 0.21	-0.75 ± 0.39
\widetilde{f}^e	1.57 ± 1.39	0.71 ± 2.92	-2.44 ± 0.22	-1.64 ± 3.55	$ ilde{f}^e$	1.48 ± 0.32	3.82 ± 1.04	-2.05 ± 0.17	0.60 ± 0.15

Predictions and comparison (Scheme I)

• CF channels

									1	£6		2
		Channel	$10^2 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{exp}$	$lpha_{ m exp}$	$eta_{ ext{exp}}$ $\gamma_{ ext{exp}}$
		$\Lambda_c^+\to\Lambda^0\pi^+$	1.30 ± 0.04 1.30 ± 0.05	-0.76 ± 0.01 -0.76 ± 0.01	0.39 ± 0.02 0.39 ± 0.02	0.51 ± 0.01 0.51 ± 0.01	5.57 ± 0.10 5.57 ± 0.10	9.24 ± 0.20 9.23 ± 0.20	2.67 ± 0.19 2.67 ± 0.02	1.29 ± 0.05	-0.762 ± 0.006	$\begin{array}{c} 0.368 \pm 0.021 \\ 0.502 \pm 0.017 \end{array}$
		$\Lambda_c^+\to \Sigma^0\pi^+$	$\begin{array}{c} 1.25 \pm 0.05 \\ 1.25 \pm 0.05 \end{array}$	-0.47 ± 0.01 -0.47 ± 0.01	$0.35 \pm 0.10 \\ 0.36 \pm 0.10$	-0.81 ± 0.04 -0.80 ± 0.05	1.94 ± 0.22 1.97 ± 0.23	19.20 ± 0.46 19.14 ± 0.47	2.50 ± 0.14 2.48 ± 0.13	1.27 ± 0.06	-0.466 ± 0.018	
		$\Lambda_c^+\to \Sigma^+\pi^0$	$\begin{array}{c} 1.26 \pm 0.05 \\ 1.26 \pm 0.05 \end{array}$	-0.47 ± 0.01 -0.47 ± 0.01	$0.35 \pm 0.10 \\ 0.36 \pm 0.10$	-0.81 ± 0.04 -0.81 ± 0.05	1.94 ± 0.22 1.97 ± 0.23	19.20 ± 0.46 19.14 ± 0.47	2.50 ± 0.14 2.48 ± 0.13	1.24 ± 0.09	-0.484 ± 0.027	
Scheme II		$\Lambda_c^+\to \Sigma^+\eta$	$\begin{array}{c} 0.33 \pm 0.04 \\ 0.32 \pm 0.04 \end{array}$	-0.92 ± 0.04 -0.92 ± 0.04	-0.01 ± 0.15 -0.15 ± 0.16	$\begin{array}{c} 0.40 \pm 0.10 \\ 0.36 \pm 0.12 \end{array}$	2.94 ± 0.21 2.87 ± 0.20	6.98 ± 0.73 7.15 ± 0.83	-3.13 ± 0.21 -2.98 ± 0.17	0.32 ± 0.05	-0.99 ± 0.06	
$\Lambda_c^+ \to \Sigma^+ \eta'$	$\begin{array}{c} 0.18 \pm 0.03 \\ 0.17 \pm 0.04 \end{array}$	$\Lambda_c^+\to \Sigma^+\eta'$	$\begin{array}{c} 0.39 \pm 0.07 \\ 0.43 \pm 0.07 \end{array}$	-0.44 ± 0.07 -0.45 ± 0.07	0.88 ± 0.06 0.90 ± 0.03	$\begin{array}{c} 0.16 \pm 0.28 \\ -0.02 \pm 0.3 \end{array}$	4.03 ± 0.78 3.91 ± 0.80	21.52 ± 2.63 24.80 ± 3.35	2.03 ± 0.08 2.03 ± 0.08	0.41 ± 0.08	-0.46 ± 0.07	
		$\Lambda_c^+\to \Xi^0 K^+$	0.34 ± 0.03 0.34 ± 0.03	-0.04 ± 0.12 -0.06 ± 0.12	-0.98 ± 0.02 -0.98 ± 0.02	$0.19 \pm 0.09 \\ 0.19 \pm 0.09$	2.76 ± 0.18 2.77 ± 0.18	9.71 ± 0.47 9.75 ± 0.46	-1.61 ± 0.12 -1.63 ± 0.12	0.55 ± 0.07	0.01 ± 0.16	
		$\Lambda_c^+ \to p K_S$	$ \begin{array}{r} 1.56 \pm 0.06 \\ 1.59 \pm 0.06 \end{array} $	-0.74 ± 0.03 -0.74 ± 0.03	0.56 ± 0.16 0.44 ± 0.54	-0.37 ± 0.23 -0.51 ± 0.47	4.17 ± 0.74 3.73 ± 1.76	15.70 ± 1.43 16.60 ± 2.62	2.50 ± 0.14 2.61 ± 0.49	1.59 ± 0.07	-0.743 ± 0.028	
		$\Xi_c^0\to \Xi^-\pi^+$	2.97 ± 0.09 2.96 ± 0.09	-0.73 ± 0.03 -0.72 ± 0.03	0.67 ± 0.03 0.68 ± 0.03	$0.13 \pm 0.04 \\ 0.13 \pm 0.04$	8.07 ± 0.21 8.08 ± 0.21	23.63 ± 0.57 23.47 ± 0.58	2.40 ± 0.04 2.38 ± 0.04	1.80 ± 0.52	-0.64 ± 0.05	
		$\Xi_c^0\to \Xi^0\pi^0$	$0.72 \pm 0.04 \\ 0.71 \pm 0.04$	$\begin{array}{c} -0.64 \pm 0.07 \\ -0.61 \pm 0.08 \end{array}$	$\begin{array}{c} 0.77 \pm 0.07 \\ 0.79 \pm 0.06 \end{array}$	-0.06 ± 0.10 -0.04 ± 0.10	3.62 ± 0.26 3.65 ± 0.25	12.63 ± 0.58 12.49 ± 0.58	2.26 ± 0.10 2.22 ± 0.10	$0.69\pm0.16^*$	$-0.90 \pm 0.27^{*}$	
$\Xi_c^0\to \Xi^0\eta$	$\begin{array}{c} 0.25 \pm 0.03 \\ 0.26 \pm 0.03 \end{array}$	$\Xi_c^0\to \Xi^0\eta$	$0.26 \pm 0.04 \\ 0.23 \pm 0.04$	0.23 ± 0.15 0.23 ± 0.15	-0.09 ± 0.15 -0.15 ± 0.15	-0.97 ± 0.04 -0.96 ± 0.05	0.43 ± 0.27 0.45 ± 0.26	$\begin{array}{c} 12.58 \pm 1.07 \\ 11.75 \pm 0.97 \end{array}$	-0.36 ± 0.56 -0.57 ± 0.35	$0.16\pm0.05^*$		
$\Xi_c^0\to \Xi^0\eta^\prime$	$\begin{array}{c} 0.23 \pm 0.03 \\ 0.22 \pm 0.03 \end{array}$	$\Xi_c^0\to \Xi^0\eta'$	0.43 ± 0.06 0.49 ± 0.07	-0.70 ± 0.06 -0.67 ± 0.06	0.71 ± 0.06 0.70 ± 0.09	-0.07 ± 0.27 -0.25 ± 0.28	3.91 ± 0.75 3.73 ± 0.77	23.72 ± 2.55 27.17 ± 3.32	2.35 ± 0.08 2.33 ± 0.09	$0.12\pm0.04^*$	J	
		$\Xi_c^+\to \Xi^0\pi^+$	$egin{array}{c} 1.0 \pm 0.1 \\ 1.0 \pm 0.1 \end{array}$	-0.88 ± 0.08 -0.90 ± 0.07	0.31 ± 0.10 0.29 ± 0.10	$\begin{array}{c} 0.36 \pm 0.13 \\ 0.32 \pm 0.13 \end{array}$	2.95 ± 0.23 2.93 ± 0.22	$\begin{array}{c} 6.67 \pm 0.86 \\ 6.94 \pm 0.85 \end{array}$	2.80 ± 0.45 2.83 ± 0.12	1.6 ± 0.8		

Predictions and comparison (Scheme I)

• SCS channels

Channel	$10^2 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{exp}$	α_{exp}	β_{exp}
$\overline{\Lambda_c^+ ightarrow \Lambda^0 K^+}$	0.0635 ± 0.0030	-0.58 ± 0.04	0.40 ± 0.07	-0.71 ± 0.04	0.57 ± 0.04	4.41 ± 0.11	2.53 ± 0.10	0.0642 ± 0.0031	-0.579 ± 0.041	0.35 ± 0.13 0.742 + 0.071
$\Lambda^+ \rightarrow \Sigma^0 K^+$	$\begin{array}{c} 0.0030 \pm 0.0030 \\ 0.0380 \pm 0.0023 \end{array}$	-0.58 ± 0.04 -0.64 ± 0.08	0.40 ± 0.07 0.77 ± 0.06	-0.71 ± 0.04 0.01 ± 0.10	0.57 ± 0.04 0.83 ± 0.06	4.42 ± 0.11 2.91 ± 0.13	2.34 ± 0.10 2.26 ± 0.10	0.0370 ± 0.0031	-0.54 ± 0.20	-0.743 ± 0.071
$n_c \rightarrow Z R$	0.0379 ± 0.0022 0.0381 ± 0.0023	-0.61 ± 0.08 -0.64 ± 0.08	0.79 ± 0.06 -0.77 ± 0.06	0.03 ± 0.10 0.01 ± 0.10	0.84 ± 0.06 0.83 ± 0.06	2.88 ± 0.13 2.91 ± 0.13	2.22 ± 0.10 2.26 ± 0.10	0.0510 ± 0.0051	-0.04 ± 0.20	
$\Lambda_c^+ \to \Sigma^+ K_S$	0.0379 ± 0.0022	-0.61 ± 0.08	0.79 ± 0.06	0.01 ± 0.10 0.03 ± 0.10	0.84 ± 0.06	2.88 ± 0.13	2.22 ± 0.10 2.22 ± 0.10	0.047 ± 0.014		
$\Lambda_c^+ ightarrow n\pi^+$	$\begin{array}{c} 0.071 \pm 0.007 \\ 0.073 \pm 0.007 \end{array}$	-0.52 ± 0.11 -0.56 ± 0.10	-0.71 ± 0.04 -0.70 ± 0.04	0.47 ± 0.10 0.44 ± 0.10	1.30 ± 0.06 1.30 ± 0.06	1.87 ± 0.24 1.95 ± 0.23	-2.21 ± 0.11 -2.24 ± 0.10	0.066 ± 0.013		
$\Lambda_c^+ \to p \pi^0$	0.0186 ± 0.0034	-0.33 ± 0.58	-0.94 ± 0.23	-0.03 ± 0.57	0.54 ± 0.14	1.34 ± 0.44	-1.91 ± 0.62	$0.0156^{+0.0075}_{-0.0061}$		
	$\begin{array}{c} 0.0196 \pm 0.0060 \\ 0.163 \pm 0.010 \end{array}$	-0.51 ± 0.16 -0.66 ± 0.06	-0.76 ± 0.62 0.44 ± 0.22	-0.40 ± 1.29 -0.61 ± 0.18	0.43 ± 0.41 1.08 ± 0.26	1.59 ± 0.95 5.63 ± 0.32	-2.16 ± 0.34 2.55 ± 0.23	-0.001		
$\Lambda_c^+ \to p\eta$	0.156 ± 0.009	-0.66 ± 0.08	0.24 ± 0.88	-0.71 ± 0.34	0.91 ± 0.54	5.70 ± 0.60	2.79 ± 1.16	0.158 ± 0.011		
$\Lambda_c^+ o p\eta'$	$\begin{array}{c} 0.052 \pm 0.008 \\ 0.050 \pm 0.008 \end{array}$	-0.44 ± 0.11 -0.46 ± 0.42	0.65 ± 0.19 0.61 ± 0.26	-0.61 ± 0.20 -0.65 ± 0.24	0.73 ± 0.17 0.68 ± 0.22	4.82 ± 0.55 4.76 ± 0.59	2.17 ± 0.20 2.22 ± 0.59	0.048 ± 0.009		

Ratios of branching fractions

Channel	$10^2 \mathcal{R}_X$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2 (\mathcal{R}_X)_{\mathrm{exp}}$
$=0 \rightarrow \Lambda K^0$	23.0 ± 0.8	-0.62 ± 0.03	0.53 ± 0.11 ·	-0.58 ± 0.11	2.47 ± 0.34	14.07 ± 0.50	2.43 ± 0.10	225 ± 1.2
$\Box_c \rightarrow \Lambda \Lambda_S$	23.1 ± 0.8	-0.61 ± 0.03	0.47 ± 0.32 ·	-0.64 ± 0.22	2.31 ± 0.72	14.28 ± 0.71	2.49 ± 0.35	22.0 ± 1.0
$=0$ $\nabla 0 k^0$	3.8 ± 0.6	-0.40 ± 0.61	-0.92 ± 0.05	0.35 ± 0.58	1.80 ± 0.46	3.84 ± 1.65	-2.02 ± 0.62	28 ± 0.7
$\Xi_c \to Z^* K_S$	3.6 ± 0.7	-0.63 ± 0.17	-0.86 ± 0.26 ·	-0.06 ± 1.59	1.47 ± 1.33	4.79 ± 3.35	-2.26 ± 0.28	3.0 ± 0.1
-0 $y + z =$	13.9 ± 1.0	-0.04 ± 0.12	-0.99 ± 0.01 ·	-0.14 ± 0.09	2.76 ± 0.18	9.71 ± 0.47	-1.61 ± 0.12	199119
$\Xi_c \to Z^* \Lambda$	14.0 ± 0.9	-0.06 ± 0.12	-0.99 ± 0.02 ·	-0.14 ± 0.09	2.77 ± 0.18	9.75 ± 0.46	-1.63 ± 0.12	12.0 ± 1.2
$\Xi^0 \rightarrow \Xi^- K^+$	4.39 ± 0.02	-0.72 ± 0.03	0.66 ± 0.03	0.21 ± 0.04	1.86 ± 0.05	5.44 ± 0.13	2.40 ± 0.04	9.75 ± 0.57
$\Xi_c \rightarrow \Xi K$	4.39 ± 0.02	-0.71 ± 0.03	0.67 ± 0.03	0.22 ± 0.04	1.86 ± 0.05	5.41 ± 0.13	2.38 ± 0.04	2.13 ± 0.51

Discussion

M. Ablikim et al. [BESIII], Phys. Rev. Lett. 132, 031801 (2024).

For the decay $\Lambda_c^+ \rightarrow \Xi^0 K^+$, BESIII found two sets of solutions for the magnitudes of S- and P-

wave amplitudes in units of $10^{-2}G_F$ GeV:

I.
$$\begin{cases} |A| = 1.6^{+1.9}_{-1.6} \pm 0.4, \\ |B| = 18.3 \pm 2.8 \pm 0.7, \end{cases}$$
 II.
$$\begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm 0.4, \\ |B| = 6.7^{+8.3}_{-6.7} \pm 1.6 \end{cases}$$

and two solutions for the phase shift,

 $\delta_P - \delta_S = -1.55 \pm 0.25 \pm 0.05$ or $1.59 \pm 0.25 \pm 0.05$ rad.

Our fits in Scheme I TDA give predictions:

 $|A| = 2.76 \pm 0.18, |B| = 9.71 \pm 0.47, \ \delta_P - \delta_S = -1.61 \pm 0.12 \text{ rad}$

 β and γ measured by LHCb provided help!

Discussion

S. Navas et al. [Particle Data Group], Phys. Rev. D 110, 030001 (2024). The predicted $Br(\Xi_c^0 \to \Xi^-\pi^+) = (2.97 \pm 0.09)\%$ is noticeably higher than the measured value of $(1.80 \pm 0.52)\%$ by Belle and two times larger than the PDG value of $(1.47 \pm 0.27)\%$. Howerver, from sum rule derived in both TDA and IRA:

Y. B. Li et al. [Belle], Phys. Rev. Lett. 122, no.8, 082001 (2019).

17

$$\frac{\tau_{\Lambda_c^+}}{\tau_{\Xi_c^0}} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \stackrel{\simeq}{\triangleq} 3\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) + \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) - \frac{1}{\sin^2 \theta_C} \mathcal{B}(\Lambda_c^+ \to n\pi^+).$$

and the measured data, we find $Br(\Xi_c^0 \to \Xi^- \pi^+) = (2.85 \pm 0.30)\%$ in good agreement with the aforementioned prediction.

$$\begin{bmatrix}
\mathcal{A}\left(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}\right) = 3\mathcal{A}\left(\Lambda_{c}^{+}\to\Lambda\pi^{+}\right) + \mathcal{A}\left(\Lambda_{c}^{+}\to\Sigma^{0}\pi^{+}\right) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{A}\left(\Lambda_{c}^{+}\to n\pi^{+}\right) \\
\Gamma = \underbrace{\frac{p_{c}}{8\pi}\frac{(m_{i}+m_{f})^{2}-m_{P}^{2}}{m_{i}^{2}}}_{\kappa = p_{c}/(E_{f}+m_{f}) = \sqrt{(E_{f}-m_{f})/(E_{f}+m_{f})}$$

Discussion

M. Ablikim et al. [BESIII], JHEP09(2024)007.

First measurement of the $K_S^0 - K_L^0$ asymmetries from BESIII

$$R(\Lambda_c^+, K_{S,L}^0 X) = \frac{\mathcal{B}(\Lambda_c^+ \to K_S^0 X) - \mathcal{B}(\Lambda_c^+ \to K_L^0 X)}{\mathcal{B}(\Lambda_c^+ \to K_S^0 X) + \mathcal{B}(\Lambda_c^+ \to K_L^0 X)}$$
$$R(\Lambda_c^+, pK_{S,L}^0) = -0.025 \pm 0.031$$

and the absolute branching fractions:

 $\mathcal{B}(\Lambda_c^+ \to p K_L^0) = (1.67 \pm 0.06 \pm 0.04)\%$

	Exp.	S1 (TDA)	S1 + pK_L (TDA)
$Br(\Lambda_c^+ \to pK_S)$	$(1.59 \pm 0.07)\%$	$(1.56 \pm 0.06)\%$	$(1.63 \pm 0.05)\%$
$Br(\Lambda_c^+ \to pK_L)$	$(1.67 \pm 0.07)\%$	$(1.50 \pm 0.06)\%$	$(1.57 \pm 0.04)\%$

Summary

- In tree level, the number of the minimum set of tensor invariants in the IRA and the topological amplitudes in the TDA is the same, namely, five in the tree-induced amplitudes.
- The recent measurements of the decay parameters β and γ by LHCb enable to fix the sign ambiguity of β and pick up the solution for S- and P-wave amplitudes.
- There is an issue of how to accommodate both $\Lambda_c^+ \to \Sigma^+ \eta'$ and $\Xi_c^0 \to \Xi^0 \eta'$ simultaneously, which needs to be clarified in the future.
- The predicted branching fraction of (2.97 ± 0.09)% for Ξ⁰_c → Ξ⁻π⁺ is higher than its current value, which should be tested soon.

Thank you !

From Topological diagrams to decay amplitudes

 $\mathcal{B}_c(\bar{3}) \to \mathcal{B}(8)P(8+1)$

The effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q_1,q_2}^{d,s} V_{cq_1}^* V_{uq_2}(c_1 O_1^{q_1q_2} + c_2 O_2^{q_1q_2}) - \lambda_b \sum_{i=3}^6 c_i O_i \right] + h.c.$$

$$O_1^{q_1q_2} = (\bar{u}q_2)(\bar{q}_1c), \ O_2^{q_1q_2} = (\bar{q}_1q_2)(\bar{u}c)$$

$$O_{3-6} \text{ are QCD-penguin operators}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} \propto & \lambda_d \left[c_1(\bar{u}d)(\bar{d}c) + c_2(\bar{d}d)(\bar{u}c) \right] + \lambda_s \left[(c_1(\bar{u}s)(\bar{s}c) + c_2(\bar{s}s)(\bar{u}c)) \right] \\ &= \frac{1}{2} (\lambda_s - \lambda_d) \Big\{ c_+ \left[(\bar{u}s)(\bar{s}c) + (\bar{s}s)(\bar{u}c) - (\bar{u}d)(\bar{d}c) - (\bar{d}d)(\bar{u}c) \right]_{15} \\ &+ c_- \left[(\bar{u}s)(\bar{s}c) - (\bar{s}s)(\bar{u}c) - (\bar{u}d)(\bar{d}c) + (\bar{d}d)(\bar{u}c) \right]_{\overline{6}} \Big\} \\ &- \frac{\lambda_b}{4} \Big\{ c_+ \left[(\bar{u}s)(\bar{s}c) + (\bar{s}s)(\bar{u}c) + (\bar{u}d)(\bar{d}c) + (\bar{d}d)(\bar{u}c) - 2(\bar{u}u)(\bar{u}c) \right]_{15^{\mathbf{b}}} \\ &+ (c_+ + 2c_-)(O_{3t})_{3\mathbf{t}} + (c_+ - 2c_-)(O_{3p})_{3\mathbf{p}} \Big\}, \end{aligned}$$

$$O_{3t} \equiv (\bar{u}u)(\bar{u}c) + (\bar{u}d)(\bar{d}c) + (\bar{u}s)(\bar{s}c) = \sum_{q=u,d,s} (\bar{u}q)(\bar{q}c), \\ O_{3p} \equiv (\bar{u}u)(\bar{u}c) + (\bar{d}d)(\bar{u}c) + (\bar{s}s)(\bar{u}c) = \sum_{q=u,d,s} (\bar{q}q)(\bar{u}c), \end{aligned}$$

The weak Hamiltonian can be decomposed as:

For the SCS processes.

 $\mathbf{3}\otimes \mathbf{ar{3}}\otimes \mathbf{3} \,=\, \mathbf{3_p}\oplus \mathbf{3_t}\oplus \mathbf{ar{6}}\oplus \mathbf{15}$