Power corrections in Heavy meson DA within the LaMET procedure

Authors: Chao Han, Wei Wang, Jia-Lu Zhang, and Jian-Hui Zhang

- 张家璐
- 上海交通大学

Why is LCDA important?

QCD Factorization: BBNS, PRL 83, 1914 (1999) For PQCD, See: Keum, Li, Sanda PRD 63,054008 (2001)

A two-step matching method

Start from Quasi DA, calculable from LQCD

A multi-scale processes:

LaMET requires Λ_{QCD}, m_H ≪ P^z and finally integrate out P^z;
bHQET requires Λ_{QCD} ≪ m_H and integrate out m_H;

⇒ Hierarchy Λ_{QCD} ≪ m_H ≪ P^z: A big challenge for lattice simulation but still calculable on the lattice

Power correction should be taken seriously when P^z is not large enough

 $\tilde{\phi}_{R}(x, P^{z}) = \int_{0}^{1} dy C(x, y, \frac{\mu}{p^{z}}) \phi(y, \mu)_{R} + O(\frac{M^{2}}{Pz^{2}}, \frac{\Lambda_{QCD}}{(P^{z})^{2}}) \qquad m_{c} \sim 1.76 GeV$

The definition of LCDA

 $\langle 0 | \bar{q}(\frac{zn_{+}}{2}) m_{+} \gamma_{5} W_{c}(\frac{zn_{+}}{2}, -\frac{zn_{+}}{2}) Q(-\frac{zn_{+}}{2}) | H(P) \rangle = if_{H}P^{+} \int_{0}^{1} dx e^{-i(x-\frac{1}{2})zP^{+}} \phi(x,\mu)$

LCDA

The definition of LCDA

 $\langle 0 | \bar{q}(\frac{zn_{+}}{2})m_{+}\gamma_{5}W_{c}(\frac{zn_{+}}{2},-\frac{zn_{+}}{2})Q(-\frac{zn_{+}}{2}) | .$ $\langle 0 | (\bar{q}(\frac{zn_z}{2})m_z\gamma_5 W_c(\frac{zn_z}{2}, -\frac{zn_z}{2})Q(-\frac{zn_z}{2}))_{lt} |$

$$H(P)\rangle = if_{H}P^{+} \int_{0}^{1} dx e^{-i(x-\frac{1}{2})zP^{+}} \phi(x,\mu)$$
$$H(P)\rangle_{non-sing} = if_{H}P^{+} \int_{0}^{1} dx (e^{-i(x-\frac{1}{2})zP_{z}})_{lt} \phi(x,\mu)$$

Nucl.Phys.B 361 (1991) Ian I. Balitsky, Vladimir M. Braun

The definition of LCDA

$$\langle 0 | \bar{q}(\frac{zn_{+}}{2}) m_{+} \gamma_{5} W_{c}(\frac{zn_{+}}{2}, -\frac{zn_{+}}{2}) Q(-\frac{zn_{+}}{2}) | H(P) \rangle = if_{H}P^{+} \int_{0}^{1} dx e^{-i(x-\frac{1}{2})zP^{+}} \phi(x,\mu)$$

$$\langle 0 | (\bar{q}(\frac{zn_{z}}{2}) m_{z} \gamma_{5} W_{c}(\frac{zn_{z}}{2}, -\frac{zn_{z}}{2}) Q(-\frac{zn_{z}}{2}))_{lt} | H(P) \rangle_{non-sing} = if_{H}P^{+} \int_{0}^{1} dx (e^{-i(x-\frac{1}{2})zP_{z}})_{lt} \phi(x,\mu)$$

The definition of Quasi-DA

$$\langle 0 | (\bar{q}(\frac{zn_z}{2})m_z\gamma_5 W_c(\frac{zn_z}{2}, -\frac{zn_z}{2})Q(-\frac{zn_z}{2})) | H(P) \rangle = if_H P^+ \int_0^1 dx e^{-i(x-\frac{1}{2}zP_z)} \tilde{\phi}(x,\mu)$$

Leading matching procedure within LaMET discards the singular logarithms, and left the

Leading-twist projection as it's power corrections

Leading twist projection:

 $\left[\bar{q}\left(-\frac{zn_{z}}{2}\right)h\gamma_{5}W_{c}Q\left(\frac{zn_{z}}{2}\right)\right]_{lt} = \sum \frac{z^{n}}{n!}n_{z}^{\mu_{1}}\dots n_{z}^{\mu_{n}}\left[\bar{q}(0)\gamma_{\mu_{1}}\overleftrightarrow{D}_{\mu_{2}}\dots \overleftrightarrow{D}_{\mu_{n}}\gamma_{5}Q(0) - Trace\right]$

 $[e^{ip \cdot z}]_{lt} = \sum_{n=1}^{\infty} \frac{1}{n!} z^{\mu_1} \dots z^{\mu_n} (p_{\mu_1} \dots p_{\mu_n} - Trace)$

Mass correction

$$[e^{ip \cdot z}]_{lt} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{\mu_1} \dots z^{\mu_n} (P_{\mu_1} \dots P_{\mu_n} - Trace)$$

Case n=2

$$n_{z}^{\mu_{1}}n_{z}^{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}} = (n_{z}^{\mu_{1}}n_{z}^{\mu_{2}} - \frac{1}{4}n_{z}^{2}g^{\mu_{1}\mu_{2}})P_{\mu_{1}}P_{\mu_{2}} + \frac{1}{4}n_{z}^{2}g^{\mu_{1}\mu_{2}}P_{\mu_{1}}P_{\mu_{2}} + \frac{1}{4}n_{z}^{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}}P_{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}}P_{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}}P_{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}}P_{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}$$

 $[n_{z}^{\mu_{1}}n_{z}^{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}}]_{lt} = n_{z}^{\mu_{1}}n_{z}^{\mu_{2}}P_{\mu_{1}}P_{\mu_{2}} \cdot (1 + \frac{1}{\Delta}(\frac{M}{Pz})^{2})$

However the coefficients is different at different n.

 $-n_z^2 g^{\mu_1\mu_2} P_{\mu_1} P_{\mu_2}$

 $[n_{z}^{\mu_{1}}\dots n_{z}^{\mu_{n}}P_{\mu_{1}}\dots P_{\mu_{n}}]_{lt} = n_{z}^{\mu_{1}}\dots n_{z}^{\mu_{n}}P_{\mu_{1}}\dots P_{\mu_{n}} \cdot (1+?(\frac{M}{P^{z}})^{2}+?(\frac{M}{P^{z}})^{4}+\dots)$

Mass correction

 $\psi(x) = \frac{1}{\sqrt{1+4c}} \left[\frac{f_+}{2}\psi_{lt}\left(\frac{1}{2} - \frac{1-2x}{f_+}\right) - \frac{f_-}{2}\psi_{lt}\left(\frac{1}{2} + \frac{1-2x}{f_-}\right)\right]$

 $c = m_H^2 / (4P^z)^2$

$\psi(x,\mu) = \psi(x,\mu)_{lt} - \frac{1}{8} \frac{m_H^2}{(P^z)^2} \times \frac{d}{dx} ((2x-1)^2)$

$$f_{\pm} = \sqrt{1 + 4c} \pm 1$$

Phys.Rev.D 95 (2017) 9, 094514 Jian-Hui Zhang, Jiunn-Wei Chen,...

$$\psi(x,\mu)_{lt} + \mathcal{O}(\frac{m_H^4}{(P^z)^4})$$

Nucl.Phys.B 361(1991) Ian I. Balitsky, Vladimir M. Braun

Quasi-DA also receives contribution from higher-twist operators

$$\mathcal{O}_{twist-4} = \int_{0}^{z} \bar{q}(0)\gamma^{5}\gamma^{\nu}W_{c}(0,z_{1})D_{\nu}W_{c}(z_{1},z_{1})$$

$$\mathcal{O}_{twist-4}' = \int_{0}^{z} dz_{1}\int_{0}^{z_{1}} dz_{2}\bar{q}(0)\gamma^{5}MW_{c}(0,z_{2})D_{\mu}$$

High dimensional operator would mix with low dimension operator on Lattice.

Covariant derivatives are realized through Wilson lines, increasing uncertainty.

Thus, hard to calculate using Lattice QCD.

 $z)Q(z)dz_1$

 $P_{\nu}W_{c}(z_{2}, z_{1})D^{\nu}W_{c}(z_{1}, z)Q(z)$

11

Λ_{OCD} correction- Renormalon model

Cutoff regularization

$$C(x, y, \frac{\mu_F}{P^z}) = \delta(x - y) + \sum_{i=1}^{\infty} c_i(\mu_F) \alpha_s^i + \sum_{i=1}^{$$

must cancel with contribution from higher-twist operators

We could estimate the higher-twist contribut

 $\frac{i}{s} - \frac{\mu_F^2}{(P^z)^2} D_Q(x) + \dots$

Since the quasi-DA is independent of the factorization scale, so the $\frac{\mu_F^2}{(P^z)^2}D_Q(x)$ term

ion from
$$\frac{\mu_F^2}{(P^z)^2} D_Q(x)$$
.

Λ_{OCD} correction- Renormalon model

Dimensional regularization

$$C(x, y, \frac{\mu_F}{P^z}) = \delta(x - y) + \sum_{i=1}^{\infty} c_i \alpha_s^i$$

The series $c_i \alpha_s^i$ becomes divergent, and the power dependence on μ_F disappears.

Renormalon model: Estimate the range of power dependence from divergent series.

Renormalons 1994 Beneke

when using LaMET matching formula.

Models of LCDA

$$\phi(x,\mu) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n(\mu) C_n^{(3/2)}(2x) \right]$$

 $\phi(x,\mu) = a(1-x)xe^{-bx}$

The choice of parameters:

 $m_H = 1.76 \text{ GeV}, \Lambda_{OCD} = 0.5 \text{ GeV}, z_s = 0.1672 \text{ fm}, \mu = 1.6 \sim 3 \text{ GeV}, P^z = \{3, 4, 5\} \text{ GeV}$

Goal: Use DA models for D-meson to estimate the impact of power corrections $(\frac{M}{Pz})^{2n}, (\frac{\Lambda_{QCD}}{Pz})^2$ on Quasi-

 $a_n^D(1.6GeV) = \{1, -0.659, 0.206, -0.057, 0.036, -0.004, -0$

1	4	
-[ЭA	•
00	7	}
	, ,	J

Numerical calculation- Mass correction at Pz=3 GeV

Blue: Quasi-DA without mass correction;

Orange: Quasi-DA,
$$(\frac{M}{P^z})^{2n}$$
;

Green: Quasi-DA, $(\frac{M}{Pz})^2$.

2. There is a dent at x=1/2.

Error bands: factorization scale

1. Distribution is wilder. Peak region is shifted to left.

Numerical calculation—Mass correction+ Λ_{QCD} correction at Pz=3 GeV

Blue: Quasi-DA without correction;

Orange: Quasi-DA,
$$(\frac{M}{P^z})^{2n}$$
 and $(\frac{\Lambda_{QCD}}{P^z})^2$;

Green: Quasi-DA, $(\frac{M}{Pz})^2$ and $(\frac{\Lambda_{QCD}}{Pz})^2$

Error bands: factorization scale and renormalon ambiguity

Numerical calculation—Mass correction+ Λ_{OCD} correction

FIG. 7. Panel (a) corresponds to the ratio $R_{I/II}$ at $P^z = 5 \text{ GeV}$, panel (b) to the ratio $R_{I/II}$ at $P^z = 4 \text{ GeV}$, and panel (c) to the ratio $R_{I/II}$ at $P^z = 3 \,\text{GeV}$.

$$R_{I/II} = \frac{\tilde{\phi}_{I/II} - \tilde{\phi}}{\tilde{\phi}}$$

For the D-meson case, in the moderate x region $x \in [0.2, 0.8]$, the corrections from mass and power are typically smaller than 20%. At peak region, mass correction dominates.

Error bands: factorization scale and renormalon ambiguity

Thank you for your attention!

Origin of the dent in mass correction

$$\tilde{\psi}_{lt}(x) = \frac{1}{\sqrt{1+4c}} \left[\frac{f_+}{2}\psi(\frac{1}{2} - \frac{1-2x}{f_+}) - \frac{f_-}{2}\psi(\frac{1}{2} + \frac{1}{2})\right]$$

Taylor expansion in c of $\psi(\frac{1}{2} - \frac{1 - 2x}{f_{\perp}})$ gives:

 $\psi(x,\mu) - \frac{1}{8} \frac{m_H^2}{(P^z)^2}$

However, Taylor expansion in c of $\psi(\frac{1}{2} + \frac{1-2x}{f})$ is zero

 $f_{\pm} = \sqrt{1 + 4c} \pm 1$

$$\frac{d}{2} \times \frac{d}{dx} ((2x-1)\psi(x,\mu) + \mathcal{O}(\frac{m_H^4}{(P^z)^4}))$$

This is the non-perturbative effect in mass correction,

which cannot be seen by fixed order correction.

Λ_{QCD} correction- Renormalon model

$$\begin{split} 2\delta_R \Phi(x,\mu) &= \left[\frac{\Phi'(x,\mu)}{x-1} \right. \\ &- \frac{1}{(x-1)^2} \int_{-1}^x dy \, \left[\frac{x-1}{y-1} + \ln\left(1 - \frac{x-1}{y-1}\right) \right] \, \Phi \\ &+ \left[\frac{\Phi'(x,\mu)}{x+1} \right. \\ &+ \frac{1}{(x+1)^2} \int_x^1 dy \, \left[\frac{x+1}{y+1} + \ln\left(1 - \frac{x+1}{y+1}\right) \right] \, \Phi \\ &+ \frac{1}{4} \Phi''(x,\mu), \end{split}$$

The range of power correction

$$\Phi'(y,\mu) \ \Phi'(y,\mu) igg]$$

$\Phi' = \Phi \pm \delta_R \Phi$

Λ_{QCD} correction- Renormalon model

Borel summation

$$C(x, y, \frac{\mu_F}{P^z}) = \delta(x - y) + \sum_{i=1}^{\infty} c_i(\mu_F) \alpha_s^i$$
$$B[T](w) = \sum_{k=1}^{\infty} \frac{c_k}{k!} \left(\frac{w}{\beta_0}\right)^k.$$

$$T(\alpha_s) = \frac{1}{\beta_0} \int_0^\infty dw e^{-w/(\beta_0 a_s)} B[T](w)$$

The asymptotic series of $T(\alpha_s)$ is exactly $\sum_{i=1}^{n} c_i \alpha_s^i$

 Λ_{QCD} correction- Renormalon model

$$T(\alpha_s) = \frac{1}{\beta_0} \int_0^\infty dw e^{-w/(\beta_0 a_s)} B[T](w)$$

Renormalon ambiguity: the choice of contour

Diagrams contribute to these poles

