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Bd(s) → K(∗)K̄(∗) puzzle
LK(∗)K̄(∗) = ρ(mK(∗)0 ,mK(∗)0 )B(long)(B̄

0
s → K(∗)0K̄(∗)0)/B(long)(B̄

0
d → K(∗)0K̄(∗)0)

A. Biswas et al., 2301.10542, M. Algueró et al., 2011.07867

Lexp

K∗K̄∗
= 4.43± 0.92 Lexp

KK̄
= 14.58± 3.37

LHCb, R. Aaij et al., 1995.06662, 2002.08229

BaBar, B. Aubert et al., 0708.2248, hep-ex/0608036

Belle, 1210.1348, 1512.02145

LSM
K∗K̄∗ = 19.53+9.14

−6.64 LSM
KK̄

= 26.00+3.88
−3.59
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Figure 1. SM contributions to the non-leptonic decays B̄d,s → K∗0K̄∗0. The internal quark lines
consist in a u-type quark, the curved wavy line is a W boson, and the horizontal wavy line may be
a gluon, a photon or a Z boson, leading to different types of penguins.

are always possible, with the CKM factors λ(q)
U = VUbV

∗
Uq.1 We denote by Tq and Pq

the hadronic matrix elements accompanying the λ(q)
u and λ

(q)
c CKM factors respectively,

and we introduce the difference ∆q = Tq − Pq. Even though the notation T and P is
reminiscent of the decomposition in tree and penguin contribution, we insist on the fact
that both quantities involves penguin diagrams (and annihilation topologies) but no tree
contributions for B̄q → K∗0K̄∗0, as illustrated in figure 1.

The CP-conjugate amplitude is given by

Af̄ = (λ(q)
u )∗Tq + (λ(q)

c )∗Pq = (λ(q)
u )∗∆q − (λ(q)

t )∗Pq . (2.2)

Af̄ is related to A = A(Bq → K∗0K̄∗0) = ηfAf̄ where ηf is the CP-parity of the final state,
given for j = 0, ||,⊥ respectively as 1, 1,−1.

Two different theoretical tools can be used to determine the values of the hadronic
matrix elements T and P . On the one hand, U -spin symmetry can help to provide rela-
tionships among hadronic matrix elements that should hold up to corrections proportional
to the difference between the masses of the d and s quarks. One thus expects that T and
P hadronic matrix elements each differ by 30% (at most) when one compares their values
for B̄d → K∗0K̄∗0 and B̄s → K∗0K̄∗0 i.e. |1− Pd/Ps| . 30% and |1− Td/Ts| . 30%.

On the other hand, factorisation approaches provide a way of computing these hadronic
matrix elements. One starts with the Weak Effective Theory separating long and short
distances at the scale µ = mb, described in appendix A.1 in detail. It remains to determine
the hadronic matrix elements corresponding to the operators Qi sandwiched between the
initial B̄q meson and the final K∗0K̄∗0 pair. A naive factorisation approach would express
them as proportional to the product of the form factor ABq→K̄

∗0

0 (0) multiplied by the decay
constant fK∗0 . One can then use QCDF to compute corrections to this naive approach
which can be shown to be valid in the heavy-quark limit mb → ∞ [11–15]. Indeed, the
hadronic matrix elements Tq and Pq can be expressed as an expansion of αs involving form
factors and light-cone distribution amplitudes as hadronic inputs, up to 1/mb-suppressed

1The weak phase in λ(q)
t is the angle βq, defined as βq ≡ arg

(
− VtbV

∗
tq

VcbV
∗
cq

)
= arg

(
−λ

(q)
t

λ
(q)
c

)
.
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show deviations with 2.6σ and 2.4σ, respectively
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Figure 2. LK∗K̄∗ (left) and LKK̄ (right) SM distributions.

models) but we keep it for simplicity which also allows us to provide p.d.f.s for both
theoretical and experimental values of the observables.

Regarding the theoretical prediction, the large uncertainty on the form factors
A
Bd,s→K∗0

0 (and the lack of knowledge on their correlation, although they are related by
U -spin) yields rather significant non-Gaussianities as they enter through the square of their
ratios in the prediction for LK∗K̄∗ (see appendix B for more detail). As already discussed in
ref. [19], a theoretical determination of both form factors would allow us to determine the
correlation between these form factors, which is expected to be significant based on U -spin
symmetry, and thus to reduce the uncertainty on the theoretical prediction of LK∗K̄∗ . The
SM distribution for this observable is presented in figure 2 and the pull is 2.6 σ.

3.2 Pseudoscalar-pseudoscalar case

As discussed in section 2.2 the corresponding observable for a decay to two pseudoscalars,
in particular for P = K0 (and its CP conjugate) is a combination of branching ratios and
the respective phase space factors, obviously without any polarisation involved:

LKK̄ = ρ(mK0 ,mK0)B(B̄s → K0K̄0)
B(B̄d → K0K̄0)

= |A
s|2 + |Ās|2

|Ad|2 + |Ād|2 , (3.5)

The SM prediction for this observable is obtained within QCDF [13] using the same
expression as eq. (2.3) once Ps,d (and ∆d,s) are substituted to the matrix elements for
the corresponding decays into pseudoscalar mesons. Using the updated values collected in
table 3 we find:

LSM
KK̄

= 26.00+3.88
−3.59 (3.6)

The SM distribution for this observable is presented in figure 2. As can be seen from our
results, the distribution can be approximated as Gaussian.

On the experimental side, following PDG [30], we have: B(B̄d → K0K̄0) = (1.21 ±
0.16) × 10−6 where PDG includes Belle [31] and Babar [32] results in calculating their
global average. In the Bs case, we have B(B̄s → K0K̄0) = (1.76± 0.33)× 10−5, where the
PDG average includes the results from the LHCb [33] and Belle collaborations [34], with
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The model-independent global fit

Leff =
4GF√

2
KtbK

∗
tp

∑

i

CiOi + h.c. (p = s, d)

O4p = (p̄αLγ
µbβL)

∑
q

(q̄βLγµq
α
L), O6p = (p̄αLγ

µbβL)
∑
q

(q̄βRγµq
α
R),

O7γp =
−emb
16π2

(p̄αLσ
µνbαR)Fµν , O8gp =

−gsmb
16π2

(p̄αLσ
µνTaαβb

β
R)Gaµν ,
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Figure 8. Variation of LK∗K̄∗ and LKK̄ w.r.t. CNP
4s . The range of CNP

4s where both observables are
compatible theoretically and experimentally within 1σ is: CNP

4s ∈ [0.016, 0.055] (corresponding to
values of 0.4 to 1.5 times the SM value). Notice that this allowed (magenta) region is determined
assuming NP in b → s transitions only and taking LKK̄ and LK∗K̄∗ as inputs. A more general
case allowing also for NP in b→ d transitions and including constraints from individual branching
ratios will be discussed in section 6.

exceptionally large NP values are allowed for CNP
4s , this observable will be quite SM-like

in the relevant region if the NP contribution to only one Wilson coefficient is switched
on (with NP values up to the same size as the SM contribution). Notice that even if
there seems to be a large quadratic term proportional to CNP

6s , it mostly cancels with the
corresponding linear term in the relevant region (the same cancellation occurs for CNP

8gs).
However, as discussed in the next section, the large interference between CNP

4s and CNP
6s can

provide an interesting and distinctive signal.
Finally, since we consider only NP shifts in b → s Wilson coefficients in this section,

we may set Rd to its SM value (we will reconsider these assumptions in section 6).

5 Combined analysis of the modes

5.1 Sensitivity of the optimised observables to NP in b→ s transitions

In this section we focus on determining allowed regions considering QCD penguin operators
(Q4s or Q6s) or the chromomagnetic operator (Q8gs), using the two measured L observables
(LK∗K̄∗ and LKK̄) as inputs and assuming that NP enters only b→ s transitions.

In figure 8 we explore the region allowed for CNP
4s taking as inputs the experimental

1σ estimates for LK∗K̄∗ and LKK̄ . The region accounting for both measured observables
within 1σ is shaded and corresponds to CNP

4s ∈ [0.016, 0.055]. Similarly, figure 9 shows the
marginal sensitivity to CNP

6s of LK∗K̄∗ , so that it appears impossible to find a common region
accounting for both observables due to NP contributions only to this Wilson coefficient.
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Figure 9. Variation of LK∗K̄∗ and LKK̄ w.r.t. CNP
6s . See figure 8 for further comments on the

assumptions and observables considered. No value of CNP
6s provides values compatible at 1σ for

both observables if CNP
4s = 0.

Figure 10. Allowed region for CNP
4s and CNP

6s where both LK∗K̄∗ and LKK̄ are compatible theoret-
ically and experimentally within 1σ. The SM point is represented by a black dot at CNP

4,6s = 0. See
figure 8 for further comments on the assumptions and observables considered.
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Figure 11. Variation of LK∗K̄∗ and LKK̄ w.r.t. CNP
8gs. The range of CNP

8gs where both observables are
compatible theoretically and experimentally within 1σ is CNP

8gs ∈ [−0.69,−0.28] (corresponding to
values of 1.8 to 4.5 times the SM value). Like in figure 8, notice that this allowed (magenta) region
is determined assuming NP in b→ s transitions only and taking LKK̄ and LK∗K̄∗ as inputs. A more
general case allowing also for NP in b → d transitions and including constraints from individual
branching ratios will be discussed in section 6.

Figure 10 shows the region for CNP
4s and CNP

6s allowed by LK∗K̄∗ and LKK̄ . The SM
is represented by a black dot at CNP

4,6s = 0. In order to generate the figure, values for CNP
4s

and CNP
6s were generated within the ranges [−0.03, 0.08] and [−0.05, 0.05] respectively at

an interval of 0.001. For each pair of values, the 1σ range for the theoretical prediction
of the observables LK∗K̄∗ and LKK̄ was determined. The contour encompasses the values
for which these ranges overlap with the 1σ experimental ranges. The region of overlap
between the contours thus obtained for LK∗K̄∗ and LKK̄ represent the values of CNP

4s and
CNP

6s that accommodate the experimental values of both observables taking into account
the uncertainties from the theoretical SM parameters (at 1σ).

The NP contributions considered are smaller than the SM values of these two Wilson
coefficients, and compatible with the current bounds (see ref. [28] for further discussion).
Interestingly, figure 10 shows that current data is compatible with NP contributions to
the Wilson coefficients of Q4s and Q6s of same sign and size, i.e, CNP

4s = CNP
6s ∼ 0.02. This

would correspond to an NP scenario where the axial contribution of the qiq̄j cancels, i.e. NP
would occur through a 4-quark vector operator with a structure similar to the semileptonic
vector operator O9 (changing leptons by quarks) involved in b→ sµµ transitions.

Figure 11 shows the allowed region for NP contribution to the Wilson coefficient C8gs
based on LK∗K̄∗ and LKK̄ . In this case there is also an allowed region CNP

8gs ∈ [−0.69,−0.28],
corresponding to NP contributions larger than the SM value, but still compatible (in part
of the allowed region) with the current bounds (see ref. [28] for further discussion).
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RPV-MSSMIS

The superpotential:

W =WMSSM + Y ijν R̂iL̂jĤu +M ij
R R̂iŜj +

1

2
µijS ŜiŜj + λ′ijkL̂iQ̂jD̂k,

WMSSM = µĤuĤd + Y iju ÛiQ̂jĤu − Y ijd D̂iQ̂jĤd − Y ije ÊiL̂jĤd

The soft SUSY breaking terms:

−Lsoft =− Lsoft
MSSM + (m2

R̃
)ijR̃

∗
i R̃j + (m2

S̃
)ijS̃

∗
i S̃j

+ (AνYν)ijR̃
∗
i L̃jHu +BijMR

R̃∗i S̃j +
1

2
BijµS

S̃iS̃j

In the (ν,R, S) basis,

Mν =

 0 mTD(= 1√
2
vuYν) 0

mD 0 MR

0 MT
R µS

 = V†
(

mdiag
νl 0

0 mdiag
νh

)
V∗

⇒ µS = (mTD)−1MRUPMNSm
diag
ν UTPMNSM

T
Rm
−1
D , when µS � mD < MR

Min-Di Zheng (SRNU) HFCPV 2024 5 / 18



RPV-MSSMIS

In the (ν̃
I(R)
L , R̃I(R), S̃I(R)) basis,

M2
ν̃I(R) =

 m2
L̃′

(Aν − µ cotβ)mTD mTDMR

(Aν − µ cotβ)mD m2
R̃

+MRM
T
R +mDm

T
D ±MRµS +BMR

MT
RmD ±µSMT

R +BTMR
m2
S̃

+ µ2
S +MT

RMR ±BµS


≈

 m2
L̃′

(Aν − µ cotβ)mTD mTDMR

(Aν − µ cotβ)mD m2
R̃

+MRM
T
R +mDm

T
D BMR

MT
RmD BTMR

m2
S̃

+MT
RMR ±BµS

mass split

In the context of mass eigenstates for di and li, other fields are rotated to mass eigenstates,

LLQD = λ′ijk
(
ν̃Lid̄RkdLj + d̃Lj d̄RkνLi + d̃∗Rkν̄

c
LidLj

− l̃Lid̄RkuLj − ũLj d̄RklLi − d̃∗Rk l̄cLiuLj
)

+ h.c.

⇒
L′LQD = λ

′I(R)
vjk ν̃

I(R)
v d̄RkdLj + λ′Nvjk

(
d̃Lj d̄Rkνv + d̃∗Rkν̄

c
vdLj

)
− λ̃′ilk

(
l̃Lid̄RkuLl + ũLld̄RklLi + d̃∗Rk l̄

c
LiuLl

)
+ h.c.,

where λ
′I(R)
vjk = λ′ijkṼ

I(R)∗
vi , λ′Nvjk = λ′ijkVvi, and λ̃′ilk = λ′ijkK

∗
lj

Min-Di Zheng (SRNU) HFCPV 2024 6 / 18



Bd(s) → K(∗)K̄(∗) process (γ, g-penguin)

b

s, d

ν̃I,R

b

b
g, γ

(a)

b

s, d

ν

b̃R

b̃R

g, γ

(b)

Gluon(phonton)-penguin diagrams in RPV-MSSMIS, within the single-value-k assumption,
i.e. λ′ij1 = λ′ij2 ≈ 0

Fig.(a) : CNP
8gp =

1

48
√

2GF ηt

{
λ′I∗vp3λ

′I∗
v33

m2
ν̃Iv

8 + 6 log

 m2
b

m2
ν̃Iv


−
λ′R∗vp3λ

′R∗
v33

m2
ν̃Rv

8 + 6 log

 m2
b

m2
ν̃Rv

+
λ′I∗vp3λ

′I
v33

m2
ν̃Iv

+
λ′R∗vp3λ

′R
v33

m2
ν̃Rv

}
CNP

7γp =− C8gp/3
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Bd(s) → K(∗)K̄(∗) process (γ, g-penguin)

b

s, d

ν̃I,R

b

b
g, γ

(a)

b

s, d

ν

b̃R

b̃R

g, γ

(b)

Gluon(phonton)-penguin diagrams in RPV-MSSMIS, within the single-value-k assumption,
i.e. λ′ij1 = λ′ij2 ≈ 0

LKK̄/L
SM
KK̄
≈1 + 1.13CNP

8gs(µEW) + 0.34CNP
8gs(µEW)2,

LK∗K̄∗/L
SM
K∗K̄∗ ≈1 + 2.41CNP

8gs(µEW) + 1.74CNP
8gs(µEW)2,

where µEW = 160 GeV

We need CNP
8gs . −0.08 for 2σ-level explanation
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Constraint: Bs − B̄s mixing

Lbs̄bs̄eff = (CVLL
SM + CVLL

NP )(s̄γµPLb)(s̄γ
µPLb) + C1SRR

NP (s̄PRb)(s̄PRb) + h.c.

CVLL
NP =

1

8i

(1

4
Λ′1XY
vv′ D2[mν̃Xv

,m
ν̃Y
v′
,mb,mb] + Λ′Nvv′D2[mνv ,mνv′ ,mb̃R

,mb̃R
]
)

C1SRR
NP =

1

8i

(
Λ′2XY
vv′ (−1)δXY+1m2

bD0[mν̃Xv
,m

ν̃Y
v′
,mb,mb]

+ Λ′3XY
vv′ (δXR − δXI)m2

bD0[mν̃Xv
,m

ν̃Y
v′
,mb,mb]−

λ′I∗2v23

2m2
ν̃Iv

+
λ′R∗2v23

2m2
ν̃Rv

)
,

where

Λ′1XY
vv′ ≡ λ′Xv33λ

′X∗
v23λ

′Y
v′33

λ′Y∗
v′23

Λ′2XY
vv′ ≡ λ′X∗v33λ

′X∗
v23λ

′Y∗
v′33

λ′Y∗
v′23

Λ′3XY
vv′ ≡ λ′X∗v33λ

′X∗
v23λ

′Y
v′33

λ′Y∗
v′23

Λ′N
vv′ ≡ λ′Nv33λ

′N∗
v23 λ

′N
v′33

λ′N∗
v′23

The recent experimental and SM results constrain

RBs ≡ ∆Ms
∆MSM

s
=

∣∣∣∣1 +
CVLL

NP

CVLL
SM

− 2.38
C1SRR

NP

CVLL
SM

∣∣∣∣
in the range of 0.90 < RBs < 1.04
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Relevant constraints
Tree-level

Observations SM predictions Experimental data

B(K+ → π+νν̄) (9.24± 0.83)× 10−11 [1] (1.14+0.40
−0.33)× 10−10 [2]

B(D0 → µ+µ−) . 6× 10−11 [3] < 3.1× 10−9 [4]
B(τ → eρ0) - < 2.2× 10−8 [5]
B(τ → µρ0) - < 1.7× 10−8 [5]
B(B → τν) (9.47± 1.82)× 10−5 [6] (1.09± 0.24)× 10−4 [2]
B(Ds → τν) (5.40± 0.30)% [7] (5.36± 0.10)% [2]
B(τ → Kν) (7.15± 0.026)× 10−3 [8] (6.96± 0.10)× 10−3 [2]

[1] J. Aebischer et al., 1810.07698 [2] PDG2024

[3] LHCb, R. Aaij et al., 1305.5059 [4] LHCb, R. Aaij et al., 2212.11203

[5] Belle, N. Tsuzuki et al., 2301.03768 [6] S. Nandi et al., 1605.07191

[7] Q.-Y. Hu et al., 2202.09875 [8] Q.-Y. Hu et al., 1808.01419

Loop-level

π → `ν(γ), τ → eγ, τ → eee, Z-pole data, µ→ eν̄eνµ, τ → `ν̄`ντ etc.

B → Xsγ: B(B → Xsγ)× 104 = (3.40± 0.17)− 8.25C7γs(µEW)− 2.10C8gs(µEW)
M. Misiak et al., 2002.01548

Set λ′2jk negligible to avoid enlarging the Cabbibo anomaly
A. M. Coutinho et al., 1912.08823

M. Blennow et al., 2204.04559
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Choice of input parameters

Parameters Sets

tanβ 15
Yν diag(0.28, 0.11, 0.10)
MR diag(1, 1, 1) TeV

BMR
diag(0.5, 0.5, 0.5) TeV2

BµS
diag(0.66, 0.66, 0.66) TeV2

mL̃′i
diag(1, 1, 1) TeV

provide MW ≈ 80.385 GeV, ml̃1
≈ 1 TeV, and mν̃1 ≈ 270 GeV

ATLAS, G. Aad et al., 2307.14759

sin2 θ12 sin2 θ23 sin2 θ13

0.304(12) 0.573+0.016
−0.020 0.02219+0.00062

−0.00063

δCP [◦] ∆m2
21[10−5 eV2] ∆m2

31[10−3 eV2]

197+27
−24 7.42+0.21

−0.20 2.517+0.026
−0.028

mdiag
ν ≈ diag(0,

√
∆m2

21,
√

∆m2
31) = diag(0, 0.008, 0.05) eV

I. Esteban et al., 2007.14792
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(S)neutrino mass spectrum

sin2 θ12 sin2 θ23 sin2 θ13

0.304(12) 0.573+0.016
−0.020 0.02219+0.00062

−0.00063

δCP [◦] ∆m2
21[10−5 eV2] ∆m2

31[10−3 eV2]

197+27
−24 7.42+0.21

−0.20 2.517+0.026
−0.028

Mdiag
ν =VMνVT

(M2
ν̃I(R) )diag =ṼI(R)M2

ν̃I(R) ṼI(R)†
which is related to the neutrino mass spectrum around {0, 8×10−15, 5×10−14, 1, 1, 1, 1, 1, 1} TeV.

And the sneutrino mixing matrices are given numerically by

ṼI ≈




−0.051 0 0 −0.541 0 0 0.840 0 0

0 −0.021 0 0 −0.543 0 0 0.840 0

0 0 −0.019 0 0 −0.543 0 0 0.840

0.995 0 0 −0.100 0 0 −0.004 0 0

0 0.999 0 0 −0.038 0 0 0 0

0 0 −0.999 0 0 0.035 0 0 0

−0.086 0 0 −0.835 0 0 −0.543 0 0

0 −0.032 0 0 −0.839 0 0 −0.543 0

0 0 −0.029 0 0 −0.839 0 0 −0.543




,

(A.2)

related to the mν̃I spectrum {475, 477, 477, 1010, 1000, 1000, 1152, 1151, 1151} GeV, as well as

ṼR ≈




0.076 0 0 0.834 0 0 −0.545 0 0

0 −0.032 0 0 −0.839 0 0 0.544 0

0 0 −0.029 0 0 −0.839 0 0 0.544

0.996 0 0 −0.094 0 0 −0.003 0 0

0 0.999 0 0 −0.038 0 0 0 0

0 0 −0.999 0 0 0.035 0 0 0

−0.054 0 0 −0.542 0 0 −0.838 0 0

0 0.021 0 0 0.543 0 0 0.839 0

0 0 0.019 0 0 0.543 0 0 0.839




,

(A.3)

related to the mν̃R spectrum {822, 822, 822, 1010, 1000, 1000, 1332, 1332, 1332} GeV.

Then ones can find, all the chargino-sneutrino diagrams and the neutralino-slepton dia-

grams, among the non-λ′ diagrams in the cLFV decays of leptons, make negligible contribu-

tions due to the vanishing of flavor mixing in sneutrino sector, as shown in Eq. (A.2) and

Eq. (A.3). As to W/H±-neutrino diagrams, they are always connected to terms VT∗(α+3)vVT(β+3)v,

VT∗(α+3)vVTβv, VT∗αv VTβv and conjugate terms (α, β = e, µ, τ and α 6= β). Readers can see calculations

19

sneutrinos with

{269, 272, 272, 1010, 1000, 1000, 1129, 1127, 1127} GeV

enhanced by the logarithm and make the related deviation explained. In the Bs − B̄s mixing,

there also exist chiral-flip contributions, and to fulfil the strict bound of experimental data, the

scenario of imaginary λ′123, λ′133 with real λ′323, λ′333 is adopted. The effect on the CPV due to

this scenario is investigated as well. As for B+ → K+νν̄ decays, we find the NP enhancement

from large |λ′133| and |λ′323|, which can explain the tension, even when sbottoms are as heavy as

10 TeV. At last, we provide some benchmark points, which also fulfill collider bounds, neutrino

data, and series of flavor-physics constraints from B,K-semileptonic decays, Z-pole data, cLFV

processes, etc.
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A The numerical form of the (s)neutrino mixing matrix

With the input set in table 2, the numerical form of the neutrino mixing matrix is listed as

VT ≈




0.836 0.526 −0.145 0.034i 0 0 −0.034 0 0

−0.246 0.600 0.761 0 0.013i 0 0 0.013 0

0.488 −0.602 0.632 0 0 0.012i 0 0 0.012

0 0 0 −0.707i 0 0 −0.707 0 0

0 0 0 0 −0.707i 0 0 0.707 0

0 0 0 0 0 −0.707i 0 0 0.707

−0.041 −0.026 0.007 0.706i 0 0 −0.706 0 0

0.005 −0.011 −0.015 0 0.707i 0 0 0.707 0

−0.008 0.010 −0.011 0 0 0.707i 0 0 0.707




,

(A.1)

18

light neutrinos with {0, 0.008, 0.05} eV and heavy ones

with TeV

which is related to the neutrino mass spectrum around {0, 8×10−15, 5×10−14, 1, 1, 1, 1, 1, 1} TeV.

And the sneutrino mixing matrices are given numerically by

ṼI ≈




−0.051 0 0 −0.541 0 0 0.840 0 0

0 −0.021 0 0 −0.543 0 0 0.840 0

0 0 −0.019 0 0 −0.543 0 0 0.840

0.995 0 0 −0.100 0 0 −0.004 0 0

0 0.999 0 0 −0.038 0 0 0 0

0 0 −0.999 0 0 0.035 0 0 0

−0.086 0 0 −0.835 0 0 −0.543 0 0

0 −0.032 0 0 −0.839 0 0 −0.543 0

0 0 −0.029 0 0 −0.839 0 0 −0.543




,

(A.2)

related to the mν̃I spectrum {475, 477, 477, 1010, 1000, 1000, 1152, 1151, 1151} GeV, as well as

ṼR ≈




0.076 0 0 0.834 0 0 −0.545 0 0

0 −0.032 0 0 −0.839 0 0 0.544 0

0 0 −0.029 0 0 −0.839 0 0 0.544

0.996 0 0 −0.094 0 0 −0.003 0 0

0 0.999 0 0 −0.038 0 0 0 0

0 0 −0.999 0 0 0.035 0 0 0

−0.054 0 0 −0.542 0 0 −0.838 0 0

0 0.021 0 0 0.543 0 0 0.839 0

0 0 0.019 0 0 0.543 0 0 0.839




,

(A.3)

related to the mν̃R spectrum {822, 822, 822, 1010, 1000, 1000, 1332, 1332, 1332} GeV.

Then ones can find, all the chargino-sneutrino diagrams and the neutralino-slepton dia-

grams, among the non-λ′ diagrams in the cLFV decays of leptons, make negligible contribu-

tions due to the vanishing of flavor mixing in sneutrino sector, as shown in Eq. (A.2) and

Eq. (A.3). As to W/H±-neutrino diagrams, they are always connected to terms VT∗(α+3)vVT(β+3)v,

VT∗(α+3)vVTβv, VT∗αv VTβv and conjugate terms (α, β = e, µ, τ and α 6= β). Readers can see calculations

19

sneutrinos with

{854, 854, 854, 1010, 1000, 1000, 1389, 1388, 1388} GeV
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Figure 2: The 2σ-level allowed regions for explaining the tensions in Bd(s) → K(∗)K̄(∗) and
B+ → K+νν̄ decays. The masses mb̃R

are given in units of TeV. The favored areas for Rνν̄
K(∗)

and non-leptonic puzzle explanations are denoted by gray and gradient, respectively. The black
dashed lines express the values of Rνν̄

K(∗) . The hatched areas filled with the cyan and blue lines
are exculded by the τ → eee decays and Bs − B̄s mixing, respectively. The red dashed lines
express the perturbativity limit, i.e. λ′ 6

√
4π.

15

The masses mb̃R
are given in units of TeV. The red dashed lines express the perturbativity

limit, i.e. λ′ 6
√

4π. r = 0.363
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K(∗)

and non-leptonic puzzle explanations are denoted by gray and gradient, respectively. The black
dashed lines express the values of Rνν̄
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The masses mb̃R
are given in units of TeV. The red dashed lines express the perturbativity

limit, i.e. λ′ 6
√

4π. r = 0.363
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Benchmark Points

mb̃R
λ′123 λ′133 λ′323 λ′333 CNP

8gs LKK̄ LK∗K̄∗ BV P × 105

13 TeV 1.1i 2.3i 3.05 −0.81 −0.083 23.63 15.87 0.80

15 TeV 1.15i 2.8i 3.18 −1 −0.103 23.08 15.06 0.79

16 TeV 1.15i 3.2i 3.18 −1.14 −0.118 22.66 14.46 0.78

Here BV P is the untagged branching ratio B(B̄s → K∗0K̄0 + c.c.)

For mb̃R
is 10 TeV:

CNP
8gs =0.028λ′∗123λ

′∗
133 + 0.004λ′∗323λ

′∗
333 − 0.061λ′∗123λ

′
133 − 0.062λ′∗323λ

′
333

RBs ≈
∣∣∣1− 160.29λ′∗2123 − 20.91λ′∗2323 + 9

(
λ′∗123λ

′
133 + λ′∗323λ

′
333

)2∣∣∣
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Conclusions

RPV-MSSMIS framework connects the trilinear interaction λ′L̂Q̂D̂ with
the (s)neutrino chirality flip to make the unique contribution to LK(∗) ¯K(∗) ,
through the gluon-penguin diagrams. The chiral-flip effects are expressed
as the double-λ′ terms in the Wilson coefficient CNP

8gs,d, which can be
enhanced by the logarithm and make the related deviation explained.

In the Bs − B̄s mixing, there also exist chiral-flip contributions, and to
fulfil the strict bound of experimental data, the scenario of imaginary
λ′123, λ′133 with real λ′323, λ′333 is adopted.
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Backup
dj νi

dm νi′

b̃R

Lddνν̄eff =(CSM
mj δii′ + CNP

mj )(d̄mγµPLdj)(ν̄iγ
µPLνi′)

+ C1SRR
mj (d̄mPRdj)(ν̄iPRνi′)

+ C2SRR
mj (d̄mσµνPRdj)(ν̄iσ

µνPRνi′) + h.c.

CNP
mj =

λ′N
i′j3λ

′N∗
im3

2m2
b̃R

=
Vi′α′V∗iαλ′α′j3λ′∗αm3

2m2
b̃R

New Belle II result induces that

B(b→ sνν̄)

B(b→ sνν̄)SM
=

3∑
i=1

∣∣CSM
23 + CNP

23

∣∣2 +
3∑

i 6=i′

∣∣CNP
23

∣∣2
3
∣∣CSM

23

∣∣2 < 3.3

at 2σ level
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Backup

b→ seτ :

∆C4λ′

9eτ =−∆C4λ′

10eτ = −
√

2π2i

2GF ηte2

(
λ̃′1i3λ̃

′∗
3i3λ

′N
v33λ

′N∗
v23 D2[mνv ,mui ,mb̃R

,mb̃R
]

+ λ̃′1i3λ̃
′∗
3i3λ

′I
v33λ

′I∗
v23D2[mν̃Iv

,mũLi
,mb,mb]

)
.

Extra imaginary part in Bs − B̄s mixing: Λ′Nvv′D2[mνv ,mνv′ ,mb̃R
,mb̃R

]

Z boson partical decay: Im (λ′∗iJ3λ
′
iJ′3/λ

′∗
1J3λ

′
1J′3)

eEDM: [(cos2 βλ′1jk − sin2 βλ′1jk) sinαAd
+ cosβλ′1jk sinβλ′1jk cosαAd

)]|λ′1jk|2
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