Amplitude Analysis and Branching Fraction Measurement of $D_s^+ \rightarrow \pi^+ \pi^- \pi^0$ at BESIII Submitted as arXiv:2406.17452

Xiao-Yu Li(李晓宇)

Institute of High Energy Physics(IHEP) China Center of Advanced Science and Technology(CCAST) Email:*xiaoyuli@ihep.ac.cn*

National Symposium on Heavy Flavour Physics and CP Violation (HFCPV2024)

Oct. 28th 2024

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^- \pi^0$

Outline

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- **5** Relative BF R_{ϕ} Measurement
- 6 Summary & Outlook

Outline

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- 5 Relative BF R_{ϕ} Measurement
- 6 Summary & Outlook

Introduction to BESIII

- BESIII is a large magnetic spectrometer operating on BEPCII
- Accumulated huge electron-positron colliding data at tau-charm energy region(2-5 GeV)
- Analysis of $D^+_s\to\pi^+\pi^+\pi^-\pi^0$ is performed based on 7.33 $\rm fb^{-1}$ data taken by BESIII at $\sqrt{s}=4.13-4.23~\rm GeV$

- D_s^+ decays contain rich information of QCD in low-energy domain
- $D_s^+ \to \pi^+ \pi^- \pi^0$ decay is never studied before, and can be used to study $f_0(980)\rho^+$, $f_0(500)\rho^+$, $\phi\pi^+$, $\omega\pi^+$ and $\rho^+\rho^0$
- Study of $D_s^+ \to f_0(980)\rho^+$ can be combined with $D_s^+ \to a_0(980)\rho$ to study $f_0(980) a_0(980)$ mixing
- Study of $D_s^+ \rightarrow f_0(500)\rho^+$ serves to distinguish long-distance interaction prediction on whether $f_0(500)$ is tetraquark or conventional meson

- $D_s^+ \to \phi \pi^+$ is a key reference channel in D_s^+ study. In $D_s^+ \to \pi^+ \pi^- \pi^0$ it can be studied via $\phi \to \pi^+ \pi^- \pi^0$
- Studies of φ meson are mainly conducted in e⁺e⁻ annihilation(KLOE/CMD/SND) and K - p scattering(HBC) experiments, which face challenges from complicated background and continuum interference
- \bullet BESIII accumulates huge data containing ϕ mesons from charm meson decays, which provides a novel method to study ϕ meson
- In comparing different channels of ϕ in charm decays, one can measure relative **BF** of ϕ decay

2 Selection Method

- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- 5 Relative BF R_{ϕ} Measurement
- 6 Summary & Outlook

Selection Method

- Signals are extracted from $e^+e^- \to D_s^{*+}D_s^- \to (\gamma D_s^+)D_s^- + c.c.$
- D_s mesons are produced **in pair**. Reconstruct seven single tag D_s channels firstly, then find signal $\pi^+\pi^+\pi^-\pi^0$ in recoiling side
- Veto $M_{\pi^+\pi^-}$ within (0.46,0.52) GeV/ c^2 to reject $K^0_S\pi^+\pi^0$

Single-Tag Channel	Mass Window (GeV/ c^2)
$D_s^- \to K_S^0 K^-$	(1.948, 1.991)
$D_s^- \to K^+ K^- \pi^-$	(1.950, 1.986)
$D_s^- \to K^+ K^- \pi^- \pi^0$	(1.947, 1.982)
$D_s^- \to K_S^0 K^+ \pi^- \pi^-$	(1.953, 1.983)
$D_s^- \to \pi^- \eta$	(1.958, 2.000)
$D_s^- o \pi^- \eta'$	(1.940, 1.996)
$D_s^- \to K^- \pi^- \pi^+$	(1.953, 1.986)

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- 5 Relative BF R_{ϕ} Measurement
- 6 Summary & Outlook

Amplitude Analysis: Selection and Purity

- Divide into four sub-samples according to c.m. energy, to cover the differences of detection efficiency. Perform simultaneous fit
- Strict selection to reduce background

Purity(%)

Amplitude Analysis: Methodology and Summary

- Construct amplitude model through **covariant tensor** method, considering interferences among components
- Fit Fraction(FF) is the fraction of a component to whole process
- $f_0(500)\rho^+$, $f_0(1500)\rho^+$ and $a_2(1320)^+\pi^0$ are excluded because of limited significance

Component	Coupling magnitude	Phase	Fit Fraction(FF)(%)	
$D_s^+ \rightarrow f_0(1370)\rho^+$	1.0(fixed)	0.0(fixed)	$24.9 \pm 3.8 \pm 2.1$	
$D_s^+ \rightarrow f_0(980)\rho^+$	$0.40 \pm 0.04 \pm 0.03$	$3.99 \pm 0.13 \pm 0.07$	$12.6 \pm 2.1 \pm 1.0$	
$D_s^+ \rightarrow f_2(1270)\rho^+$	$0.77 \pm 0.10 \pm 0.03$	$1.11 \pm 0.10 \pm 0.10$	$9.5\pm1.7\pm0.6$	
$D_s^+[S] \rightarrow \rho^+ \rho^0$	$0.12 \pm 0.02 \pm 0.01$	$1.10 \pm 0.18 \pm 0.10$	$3.5 \pm 1.2 \pm 0.6$	
$D_s^+[S] \rightarrow \rho^+(1450)\rho^0$	$1.15 \pm 0.19 \pm 0.08$	$0.43 \pm 0.18 \pm 0.17$	$4.6\pm1.3\pm0.8$	
$D_s^+[P] \rightarrow \rho^+ \rho^0(1450)$	$0.57 \pm 0.06 \pm 0.01$	$4.58 \pm 0.16 \pm 0.09$	$8.6 \pm 1.3 \pm 0.4$	
$D_s^+ \to \phi \pi^+, \phi \to \rho \pi$	$0.075 \pm 0.006 \pm 0.004$	$2.90 \pm 0.15 \pm 0.18$	$24.9 \pm 1.2 \pm 0.4$	
$D_s^+ \to \omega \pi^+, \omega \to \rho \pi$	$0.20 \pm 0.02 \pm 0.03$	$3.22 \pm 0.21 \pm 0.09$	$6.9\pm0.8\pm0.3$	
$D_{s}^{+} \rightarrow a_{1}^{+} \pi^{0}, a_{1}^{+}[S] \rightarrow \rho^{0} \pi^{+}$	$0.57 \pm 0.06 \pm 0.05$	$3.78 \pm 0.16 \pm 0.12$	$12.5 \pm 1.6 \pm 1.0$	
$D_s^+ \rightarrow a_1^0 \pi^+, a_1^0[S] \rightarrow \rho \pi$	$0.31 \pm 0.06 \pm 0.04$	$4.82 \pm 0.15 \pm 0.12$	$6.3 \pm 1.9 \pm 1.2$	
$D_s^+ \to \pi^0(1300)\pi^+ \to ([P]\rho\pi)\pi^+$	$0.28 \pm 0.04 \pm 0.07$	$2.22 \pm 0.14 \pm 0.08$	$11.7 \pm 2.3 \pm 2.2$	

Ampitude Analysis: Fit Projection

• In $M_{\pi^+\pi^-}$ spectrum, veto K_S at (0.46,0.52) GeV/ c^2 and clear $f_0(980)$ signal can be observed

Xiao-Yu Li (CCAST)

Ampitude Analysis: Fit Projection

• In $M_{\pi^+\pi^-\pi^0}$ spectrum, clear ϕ and ω signal can be observed and precisely measured. Fit result and data is **consistent**

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^- \pi^0$

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
 - 5 Relative BF R_{ϕ} Measurement
 - 5 Summary & Outlook

Branching Fraction Measurement

- Because of high purity of $D_s^+ \to \eta (\to \pi^+ \pi^- \pi^0) \pi^+$, $\eta \pi^+$ is measured separately from non- η process
- For $D_s^+ \to \pi^+ \pi^- \pi^0$ (non- η), we get 2489 ± 91 signals and BF is measured to be $(2.04 \pm 0.08)\%$
- For $D_s^+ \to \eta (\to \pi^+ \pi^- \pi^0) \pi^+$, we get 392 ± 22 signals and BF is measured to be $(3.58 \pm 0.21) \times 10^{-3}$

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- **5** Relative BF R_{ϕ} Measurement
 - 6 Summary & Outlook

Relative BF R_{ϕ} Measurement

• Based on fit fraction(FF_i), total BF(BF($D_s^+ \rightarrow 4\pi | \text{non}-\eta)$) and BF of sub-decays, one can calculate the BF of a component in the amplitude model: BF_i = FF_i × BF($D_s^+ \rightarrow 4\pi | \text{non}-\eta) \div \text{BF}_{sub}$

Component	BF (10 ⁻³)(PDG)	BF (10^{-3}) (This work)
$D_s^+ \to \phi \pi^+$	$44.9 \pm 1.0 \pm 1.4$	$33.0 \pm 2.1 \pm 0.9$
$D_s^+ \to \omega \pi^+$	$1.77 \pm 0.32 \pm 0.13$	$1.58 \pm 0.19 \pm 0.08$
$D_s^+ \to \eta \pi^+$	$16.7 \pm 0.8 \pm 0.6$	$15.6\pm0.9\pm0.4$

• Combining the BESIII measurement of $D_s^+ \to \phi(\to K^+K^-)\pi^+$, one can calculate $R_{\phi} = \frac{\mathcal{B}(\phi \to \pi^+\pi^-\pi^0)}{\mathcal{B}(\phi \to K^+K^-)} = 0.230 \pm 0.014 \pm 0.010$, which differs by $> 4\sigma$ and by $\sim 30\%$ relatively from the world average value $R_{\phi}^{\mathsf{PDG}} = \frac{\mathcal{B}(\phi(1020) \to \pi^+\pi^-\pi^0)}{\mathcal{B}(\phi(1020) \to K^+K^-)} = 0.313 \pm 0.010$

- 2 Selection Method
- 3 Amplitude Analysis
- 4 Branching Fraction Measurement
- 5 Relative BF R_{ϕ} Measurement
- 6 Summary & Outlook

Summary & Outlook

- Summary
 - Report of Amplitude Analysis and BF Measurement of $D_s^+ \to \pi^+\pi^+\pi^-\pi^0$
 - $D_s^+ \to f_0(980) \rho^+$ is precisely measured, providing valuable information to $f_0 a_0$ mixing study
 - $D_s^+ \rightarrow f_0(500)\rho^+$ is excluded due to limited significance, suggesting its tetraquark configuration according to **long-distance interaction** prediction
 - $D_s^+ \to \phi \pi^+$ is precisely measured, and get $R_{\phi} = \frac{\mathcal{B}(\phi \to \pi^+ \pi^- \pi^0)}{\mathcal{B}(\phi \to K^+ K^-)} = 0.230 \pm 0.014 \pm 0.010$, which differs by $> 4\sigma$ and by $\sim 30\%$ relatively from PDG value. Expect theory explain
- Outlook
 - Based on huge $\psi(3770)$ data accumulated by BESIII, Studies of f_0 in charm sector such as $D \to a_0/f_0 \pi$, $D \to a_0/f_0 \rho$ are ongoing
 - Regarding the anomaly in R_{ϕ} , **Cross Checks** are being performed at BESIII in $D^+_{(s)} \rightarrow \pi^+ \pi^+ \pi^- \pi^0 \pi^0$, $D^+_{(s)} \rightarrow K_S K_L \pi^+$

Thanks for Listening! Suggestions are Welcomed!

BackUp

.

• 分析基于的数据样本详细信息见下表

样本	年份	亮度 (pb^{-1})	E_{cm} (MeV)				
4130	2019	401.5	4128.48 ± 0.44				
4160	2019	408.7	4157.44 ± 0.44				
4180	2016	$3180.0 \pm 0.2 \pm 31.0$	亚均 4178				
4180	2016	$5169.0 \pm 0.2 \pm 51.9$	4170				
4190	2017	$526.7 \pm 0.1 \pm 2.2$	$4188.99 \pm 0.06 \pm 0.41$				
4190	2012	$43.33 \pm 0.03 \pm 0.29$	$4188.59 \pm 0.15 \pm 0.68$				
4200	2017	$526.0 \pm 0.1 \pm 2.1$	$4199.03 \pm 0.05 \pm 0.41$				
4210	2017	$517.1 \pm 0.1 \pm 1.8$	$4209.25 \pm 0.06 \pm 0.42$				
4210	2013	$54.95 \pm 0.03 \pm 0.36$	$4207.13 \pm 0.14 \pm 0.61$				
4220	2017	$514.6 \pm 0.1 \pm 1.8$	$4218.84 \pm 0.05 \pm 0.40$				
4220	2013	$54.60 \pm 0.03 \pm 0.36$	$4217.13 \pm 0.14 \pm 0.67$				
4230	2013	$104734 \pm 0.14 \pm 10.16$	$4320.34 - 2.87 \times 10^{-3} \times N_{run} \pm 0.05$				
4230	2013	$1047.54 \pm 0.14 \pm 10.10$	$4225.54 \pm 0.05 \pm 0.65$				
4230	2012	$44.54 \pm 0.03 \pm 0.29$	$4226.26 \pm 0.04 \pm 0.65$				

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^- \pi^-$

事例挑选

- 带电径迹挑选
 - |cosθ|<0.93;
 - 与对撞点沿 XY 平面距离 R_{xy} < 1.0cm
 - 与对撞点沿 Z 轴距离 $|R_z| < 10.0$ cm
- *K*⁺(*K*[−]) 粒子鉴别
 - $CL_K > 0$; $CL_K > CL_{\pi}$
- *π*⁺(*π*[−]) 粒子鉴别
 - $CL_{\pi} > 0$; $CL_{\pi} > CL_{K}$
- 好光子 γ 挑选
 - θ>10°
 - E > 0.025 GeV, $|\cos \theta| < 0.8$
 - E > 0.05 GeV, 0.86< $|\cos \theta| < 0.92$
 - 飞行时间 $0 < t_{TDC} < 700$ ns

事例挑选

*K*⁰_S 重建

- 通过一对带电径迹重建
- 顶点拟合: χ² < 100
- 要求不变质量满足 0.487< M_{π+π⁻} <0.511GeV/c²
- π⁰ 重建
 - 用一对好光子 γ 重建, 且至少一个来自 BESIII 桶部
 - π^0 质量运动学拟合: $\chi^2 < 30$
 - 要求不变质量满足:0.115< M_{γγ} <0.150GeV/c²
- η 重建
 - 用一对好光子 γ 重建, 且至少一个来自 BESIII 桶部
 - η 质量运动学拟合: $\chi^2 < 30$
 - 要求不变质量满足:0.500< $M_{\gamma\gamma}$ <0.570GeV/ c^2
- η' 重建
 - 用 $\pi^+\pi^-\eta_{\gamma\gamma}$ 重建
 - 要求不变质量满足:0.946< $M_{\pi^+\pi^-\eta_{\gamma\gamma}}$ <0.970GeV/ c^2

- 定义观测量 $M_{rec} = \sqrt{(E_{cm} \sqrt{p_{D_s}^2 + m_{D_s}^2})^2 |\vec{p}_{cm} \vec{p}_{D_s}|^2}$, 并要 求至少事例中挑出的一对 D_s 介子, 至少有一个满足 2.100< M_{rec} <2.125GeV/ c^2 , 以**反冲得到** D_s^*
- 定义观测量 $M_{rec0} = \sqrt{(E_{cm} \sqrt{|p_{D_s^2\gamma}|^2 + m_{D_s^*}^2})^2 |\vec{p}_{D_s^1}|^2}$,要求选出的 D_s^* 满足 1.958< M_{rec0} <1.986GeV/ c^2 ,选出 D_s^*
- 要求不变质量 $M_{\pi^+\pi^-}$ 在 (0.46,0.52)GeV/ c^2 区间外, 排除 $K_S^0\pi^+\pi^0$
- 要求不变质量 M_{π+π-π⁰} 在 (0.52,0.58)GeV/c² 区间外, 排除 π⁺η
- 在振幅分析中,同时重建单标记道与信号道 D_s,加入标记侧 D_s 质量、信号侧 D_s 质量、D^{*}_s 质量和总四动量约束,进行运动学拟合,提高末态动量分辨率

振幅分析: 拟合公式与本底形状

• 振幅分析通过如下公式对数据进行拟合

$$\begin{aligned} \mathsf{PDF}(p_i) &= \omega_{sig} f_S(p_i) + (1 - \omega_{sig}) f_B(p_i) \\ &= \omega_{sig} \frac{\epsilon(p_j) |M(p_j)|^2}{\int \epsilon(p_j) |M(p_j)|^2 d\Omega_4} + (1 - \omega_{sig}) \frac{B(p_j)}{\int B(p_j) d\Omega_4} \\ &= \epsilon(p_j) [\omega_{sig} \frac{|M(p_j)|^2}{\int \epsilon(p_j) |M(p_j)|^2 d\Omega_4} + (1 - \omega_{sig}) \frac{B(p_j)/\epsilon_{5D}}{\int B(p_j) d\Omega_4} \end{aligned}$$

• 信号 PDF 由振幅公式构造,本底 PDF 通过 MC 样本估计

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^- \pi^-$

振幅分析中的系统误差总结为五个来源

- (I) 共振态模型:通过改变质量或者宽度 ±1σ 误差后结果的变化评估;对于 Flatté 传播子则改变其参数;
- (II) 势垒因子:通过在 [2.0,4.0] *GeV*⁻¹ 范围内改变势垒因子后,拟 合结果的变化评估
- (III) 拟合偏差:通过对信号 MC 进行拟合,并对结果进行 Pull 分布 分析,以其对标准正态分布的偏离作为该项误差评估
- (IV) 本底形状:通过在误差范围内调节样本纯度以及改变本底形状 抽取方式后,拟合结果的变化来评估
- (V) 数据 MC 效率差异:通过控制样本得到修正因子,并修正数据
 中各个 π 介子的效率后,拟合结果的变化来评估

Component	Parameter	Source					Tatal
Component		I	11	111	IV	V	Total
$D_s \to \rho^+ f_0(1370)$	FF	1.3	1.3	0.7	0.5	0.4	2.1
	FF	1.0	0.1	0.2	0.2	0.1	1.0
$D_s \to \rho^+ f_0(980)$	Phase	0.06	0.02	0.03	0.00	0.00	0.07
	Magnitude	0.03	0.01	0.01	0.01	0.00	0.03
	FF	0.3	0.5	0.1	0.1	0.1	0.6
$D_s \rightarrow \rho^+ f_2(1270)$	Phase	0.09	0.03	0.00	0.01	0.00	0.10
	Magnitude	0.01	0.02	0.01	0.01	0.01	0.03
	FF	0.3	0.5	0.2	0.0	0.0	0.6
$D_s[S] \to \rho^+ \rho^0$	Phase	0.09	0.02	0.03	0.01	0.01	0.10
	Magnitude	0.01	0.01	0.00	0.00	0.00	0.01
$D_s[S] \to \rho^+(1450)\rho^0$	FF	0.3	0.6	0.0	0.2	0.3	0.8
	Phase	0.11	0.12	0.03	0.02	0.04	0.17
	Magnitude	0.03	0.04	0.03	0.03	0.04	0.08
	FF	0.2	0.3	0.1	0.0	0.0	0.4
$D_s[S] \rightarrow \rho^+ \rho^0(1450)$	Phase	0.03	0.07	0.04	0.02	0.02	0.09
	Magnitude	0.01	0.01	0.00	0.00	0.00	0.01

Commonant	Parameter	Source					
Component		I	П	Ш	IV	V	Total
	FF	0.1	0.1	0.3	0.2	0.0	0.4
$D_s \to \phi \pi^+, \phi \to \rho \pi$	Phase	0.10	0.13	0.07	0.01	0.02	0.18
	Magnitude	0.002	0.002	0.002	0.002	0.001	0.004
	FF	0.0	0.2	0.2	0.0	0.0	0.3
$D_s \to \omega \pi^+, \omega \to \rho \pi$	Phase	0.07	0.03	0.05	0.01	0.02	0.09
	Magnitude	0.00	0.02	0.01	0.01	0.01	0.03
$D_s \to a_1^+ \pi^0, a_1^+[S] \to \rho \pi$	FF	0.7	0.7	0.1	0.1	0.1	1.0
	Phase	0.11	0.02	0.00	0.02	0.02	0.12
	Magnitude	0.03	0.03	0.02	0.01	0.01	0.05
$D_s o a_1^0 \pi^+, a_1^0[S] o ho \pi$	FF	0.9	0.5	0.0	0.5	0.4	1.2
	Phase	0.11	0.03	0.04	0.02	0.02	0.12
	Magnitude	0.03	0.02	0.01	0.01	0.01	0.04
$D_s[S] \to \pi^0(1300)\pi^+$	FF	1.1	1.7	0.0	0.6	0.7	2.2
	Phase	0.03	0.07	0.01	0.02	0.02	0.08
	Magnitude	0.04	0.05	0.01	0.01	0.01	0.07

分支比测量: 单标记产额

- 分为四个数据集, 合并得到最终结果
- (I)(4.13-4.16) 样本 (II)(4.18) 样本 (III) (4.19-4.22) 样本 (IV) (4.23) 样本。下图展示 (II) 样本上的单标记拟合结果

检查

- 对 ϕ 的峰直接拟合
- 简单计算得比分为 (23.4±1.6)%, 与振幅分析结果 (24.9±1.2±0.4)% 误差内一致

Xiao-Yu Li (CCAST)

<u>PWA & BF of $D_s^+ \to \pi^+ \pi^+ \pi^- \pi^0$ </u>

振幅分析: 拟合结果投影图

Xiao-Yu Li (CCAST)

PWA & BF of $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$