Semileptonic Processes in AdS / QCD Soft Wall Models Alfredo Vega

Universidad deValparaíso CHILE The 21st National Symposium on Heavy Flavor Physics and CP Violation

Hengyang, China

October 27, 2024

Outline

General Ideas about AdS / QCD Models

Electromagnetic Form Factors in AdS / QCD models

Semileptonic Processes in AdS / QCD models

Final Comments

***** Basic ideas about AdS / QCD models.

- Gauge / Gravity can be used to study hadron properties
- There are two ways to extend AdS/CFT through to QCD:
 - Top-Down Approach.
 Starting from a string theory, in low energy limits, and compactifiying extra dimensions, try to get a QCD-like theory at the border.
 - Bottom-Up Approach. Hadron properties are used to build a model in a gravity frame with extra dimensions.
- Exists a dictionary that relates quantities at both sides of the holographic correspondence.
- In Bottom-Up approach we consider

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} igg(\mathcal{L}_{Part} + \mathcal{L}_{Int} igg)$$

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Part} + \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Int}$$

Example: Scalar hadrons case ¹

 $\mathcal{L} = g^{MN} \partial_{M} \psi(x, z) \ \partial_{N} \psi(x, z) + m_{5}^{2} \psi^{2}(x, z) \,,$

with M, N = 0, 1, 2, 3, z.

- z correspond to the holographic coordinate.
- $\phi(z)$ is a dilaton field introduced to discretize spectrum (you can use a hard cut-off also).
- m_5 is the mass in bulk. It is related to the dimension of operators that create hadrons. For scalars $m_5^2 R^2 = \Delta (\Delta 4)$

Δ_0	(nQ)(mG)
3	(2Q)
4	(2G)

¹e.g., see A. V and I. Schmidt Phys.Rev.D 78 (2008) 017703

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Part} + \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Int}$$

Example: Scalar hadrons case

$$\mathcal{L} = g^{MN} \partial_{M} \Psi \left(x, z \right) \partial_{N} \Psi \left(x, z \right) + m_{5}^{2} \Psi^{2} \left(x, z \right),$$

A usual choice for hadrons in vacuum at zero temperature is

$$d^{2}s = e^{2A(z)}(z) \eta_{MN} dx^{M} dx^{N}$$

where $e^{2A(z)}$ is a warp factor and $\eta_{MN} = diag(-1, 1, 1, 1, 1)$. From this action we obtain an equation of motions in 5 dimensions for scalars, and we use the transformation $\Psi(X, z) = e^{-iPX} f(z)$, where P and X correspond to momentum and position in a 4D boundary.

$$-f''(z) + B'(z)f'(z) + e^{2A(z)}m_5^2f(z) = M^2f(z),$$

where $B(z) = \phi(z) - 3A(z)$ and $P^2 = M^2$, i.e., *M* is the mass of the hadron studied in these kinds of models.

Considering the transformation

$$f(z)=e^{\frac{1}{2}B(z)}\psi(z),$$

we obtain a Schrödinger like equation

 $\left(-\partial_{z}^{2}+V\left(z\right)\right)\psi\left(z\right)=M^{2}\psi\left(z\right).$

In terms of AdS metric (A(z) = Ln(1/z)), $\phi(z)$ and m_5 , potential is

$$V(z) = \frac{15}{4z^2} + \frac{m_5^2 R^2}{z^2} - \frac{3}{2z} \phi'(z) + \frac{1}{4} \phi'^2(z) - \frac{1}{2} \phi''(z).$$

Examples:

- $\phi(z) = cte$ with a hard cutoff at z_0 . (Hard Wall model)
- $\phi(z) = cz^2$ (Traditional Soft Wall Model)

$$V(z) = \frac{15}{4z^2} + \frac{m_5^2 R^2}{z^2} + c^2 z^2 + 2c.$$

Warning: Vectors ² appear on this slide but the same happens with scalars.

	Linea	r Regge	Trajectory: $M^2 = a(n + b)$	Non L	inear Re	egge T	rajectory $(M^2 = a(n + b)^{\nu})$
Meson	а	b	R^2	a	b	ν	R^2
ω	1.1074	-0.3781	0.9978	1.1078	-0.3784	0.9998	0.9978
ϕ	1.7595		0.9999	1.8545	-0.4524		
ψ	3.2607		0.9997	7.6516	0.4460		
Υ	6.2015	13.9182	0.9996	85.3116	0.2849	0.1917	0.9999
				5			
	5						_
				4			
	~j3 ³	-		2			
	- 2			2		/	
	-						
	1	-		1	/		-
	0						
	0	0 1	2 3 4 5	0.0	0.5 1.		2.0 2.5 3.0
			n			n	
	2	20		120			
		-					
		15		110		/	
	6 ¹⁰			W ²			
				< 100			
		10		90	$ \land $		
		/			/		
		5	1 2 3 4	80	1	2 3	4 5 6
		U	1 2 3 4	0		2 3 n	a D 8

²M. A. Martín and A. V, Phys.Rev.D 102 (2020) 4, 046007 8 of 20

Example: Gauge boson fields ³ For a five dimensional gauge boson field, we have:

$$S=\int d^5x\sqrt{-g}\,\frac{1}{4}V_{mn}V^{mn}\,,$$

where the electromagnetic tensor V^{mn} is written as usual as $V_{mn} = \partial_m V_n - \partial_n V_m$.

$$V(x,z)_{\mu} = \epsilon_{\mu} e^{-iQ\cdot x} J(Q^2,z)$$
 and $V_z = 0$

with

$$\mathsf{J}(\mathsf{q}^2,z) = \mathsf{\Gamma}\left(1 - \frac{q^2}{4\kappa^2}\right) U\left(-\frac{q^2}{4\kappa^2},0,z^2\kappa^2\right)$$

For quadratic dilaton case.

³e.g., see T. Gutsche, V. Lyubovitskij, A. V and I. Schmidt.

Electromagnetic Form Factors in AdS / QCD models

Electromagnetic Form Factors in AdS / QCD models

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Part} + \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Int}$$

The matrix element for the spin-S current and the spin-J hadrons is given by

 $\langle b|J_{\mu_1\mu_2...\mu_s}|a\rangle = (charge)(kinematic factor)F_{ab}(Q^2),$

where $F_{ab}(Q^2)$ is the form factor.

Example: For scalar mesons, the hadronic matrix element for the electromagnetic current

 $\langle M(P')|J_{\mu}^{EM}|M(P)\rangle = (P+P')_{\mu}f_{+}(q^{2}) + (P-P')_{\mu}f_{-}(q^{2}).$

By current conservation $f_{-}(q^2) = 0$

 $\langle M(P')|J_{\mu}^{EM}|M(P)
angle=(P+P')_{\mu}F_{\pi}(q^2).$

Electromagnetic Form Factors in AdS / QCD models

Considering an interaction term in AdS/QCD side as ⁴

$$S_{int} = ig_5 \int d^4x dz \sqrt{g} e^{-\phi(z)} V'(x,z) \Psi_{p'}(x,z) \overleftrightarrow{\partial}_I \Psi_p(x,z)$$

where g_5 is an effective coupling constant and $A \overleftrightarrow{\partial} B = A(\partial B) + (\partial A)B$. $\Psi_P(x,z) \sim e^{P \cdot x} \Psi_P(z)$, where x and P is position and momentum on the Minkowski part and $V_{\mu}(x,z) \sim \epsilon_{\mu} e^{q \cdot x} J(q^2,z)$, $A_z(z) = 0$. Then form factors related to scalar hadrons in AdS is

$$F(Q^2) = \int_0^\infty dz \, e^{3A(z) - \phi(z)} \Psi(z) J(Q^2, z) \Psi(z),$$

where $\Psi(z)$ and $J(Q^2, z)$ are the AdS modes dual to scalar hadrons and photons. These modes are the solutions of the bulk EOM in the Sturm Liouville form associated with each bulk field.

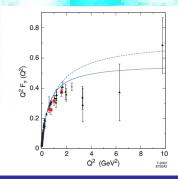
⁴e.g, see S. Brodsky and G. de Teramond, Phys.Rev.D 77 (2008) 056007

Electromagnetic Form Factors in AdS / QCD models

The latter form factor can be transformed into the following expression

$$F(Q^2) = \int_0^\infty dz \,\psi(z) J(Q^2, z) \psi(z) \,,$$

where $\psi(z)$ are solutions of the EOM transformed in Schrödinger-like form, while $J(Q^2, z)$ remains as the same solution used before.



Considering the decay $M_1(P) \rightarrow M_2(P') + I(k_1) + \bar{\nu}_I(k_2)$, the current of interest for us can be decomposed as follows

 $\langle M_2(P')|J_\mu(0)|M_1(P)\rangle = (P+P')_\mu f_+(q^2) + (P-P')_\mu f_-(q^2).$ where q^2 varies within the range $m_1^2 \le q^2 \le (M_1^2 - M_2^2)^2 = q_{max}^2.$ From these form factors it is possible to calculate branching ratios,

$$rac{\mathcal{B}(H_1 o H_2 l ar{
u}_l)}{ au(H_1)} = \int_0^{(m_1 - m_2)^2} rac{d\Gamma(H_1 o H_2 l ar{
u}_l)}{dq^2} dq^2.$$

In AdS side these form factors can be written as

$$f_{\pm}(q^2) = g_{\pm} \int_0^\infty dz \ J(q^2, z) \psi_{P'}(z) \psi_P(z).$$

 $\langle M_2(P')|J^{\mu}(0)|M_1(P)\rangle = (P+P')^{\mu}f_+(q^2) + (P-P')^{\mu}f_-(q^2).$

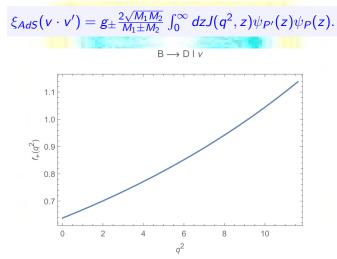
In AdS side these form factors can be written as

$$f_{\pm}(q^2) = g_{\pm} \int_0^\infty dz \ J(q^2, z) \psi_{P'}(z) \psi_P(z).$$

Some processes of this kind are,

- $(V_{ud}) \pi^- \rightarrow \pi^0 e^- \bar{\nu}_e$
- $(V_{us}) K^- \rightarrow \pi^0 l^- \bar{\nu}_l$
- $(V_{cd}) D^- \rightarrow \pi^0 l^- \bar{\nu}_l$
- $(V_{cs}) D^- \rightarrow K^0 l^- \bar{\nu}_l$
- $(V_{ub}) B^- \rightarrow \pi^0 l^- \bar{\nu}_l$
- $(V_{cb}) B^- \rightarrow D^0 l^- \bar{\nu}_l$

An holographic approach to Isgur - Wise function



Final Comments

- In the context of holographic dualities it is possible to build phenomenological models to study hadron properties.
- These models in the past have been used extensively to study several properties, as electromagnetic form factors, but a small amount of paper explores the uses of holography in the electroweak sector.
- Applicability of AdS / QCD models to study electroweak processes, as semileptonic decays is possible and by now there is a small amount of work in this direction.

