

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Light QCD exotics at ₿€5Ⅲ

Tingting Han (On behalf of the BESIII Collaboration) Institute of High Energy Physics

第二十一届全国重味物理和CP破坏研讨会,衡阳

light QCD physics

- Well-known classes of hadrons: $meson(q\bar{q})$, baryon(qqq)
- Key things to search for: additional degree of freedom
 - •Multi-quark states ; Hybrids ; Glueballs
 - •Strong evidences for multi-quark in heavy quark sector

A new "particle zoo": https://qwg.ph.nat.tum.de/exoticshub/

•Evidence for gluonic excitations remains sparse

Light meson spectroscopy

•Key tool to study/develop QCD in non-perturbative region

World's Largest τ –charm Data Sets in e^+e^- Annihilation

beam energy: 1.0 – 2.3(2.45) GeV

LINAC

LINAC

LINAC

Statistical and the state of the

Beijing Electron Positron Collider (BEPCII)

 $\Gamma(J/\psi \to \gamma G) > \Gamma(J/\psi \to \gamma H) > \Gamma(J/\psi \to \gamma M) > \Gamma(J/\psi \to \gamma F)$ Jun С J/w J/w 0000000000 00000000000000000 $\Gamma(I/\psi \rightarrow \gamma G) \sim O(\alpha \alpha_s^2)$ $\Gamma(J/\psi \rightarrow \gamma H) \sim O(\alpha \alpha_s^3)$ 1 m M C 00000 J/w 0000 $\Gamma(I/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$ $\Gamma(I/\psi \rightarrow \gamma M) \sim O(\alpha \alpha_s^4)$ Glueballs and hybrids are expected to

have a larger yield compared to mesons.

Charmonium radiative decays provide an ideal laboratory for gluonic states

≻Gluon-rich process

 \succ Well defined initial and final states

- Kinematic constraints
- I (J ^{pc}) filter : final states dominated by I=0 processes and C parity must be +

>Clean high statistics data sample : $10 \times 10^9 J / \psi$ and $2.9 \times 10^9 \psi(2S) @BESI I I$

Light hadrons with exotic quantum numbers

- Unambiguous signature for exotics
 - $\checkmark\,$ Light Flavor-exotic hard to establish
 - $\checkmark\,$ Efforts concentrate on Spin-exotic
 - Forbidden for for $(q\bar{q}): 0^{--}$, $even^{+-}$, odd^{-+}
- Only 3 spin exotic candidate so far \Rightarrow all 1⁻⁺ isovectors : $\pi_1(1400)$: seen in $\eta \pi$ $\pi_1(1600)$: seen in $\rho \pi$, $\eta' \pi$, $b_1 \pi$, $f_1 \pi$ $\pi_1(2015)$: seen in $b_1 \pi$, $f_1 \pi \Rightarrow$ needs confirmation
 - ✓ $\pi_1(1400)$, $\pi_1(1600)$ can be one pole

Detailed reviews: PRC 82, 025208 (2010), PPNP 82, 21 (2015)

	Decay mode	Reaction	Experiment
π ₁ (1400)	ηπ	$\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\bar{p}n \rightarrow \pi^{-}\pi^{0}\eta$ $\bar{p}p \rightarrow \pi^{0}\pi^{0}\eta$	GAMS KEK E852 E852 CBAR CBAR
	ρπ	$\bar{p}p \rightarrow 2\pi^+ 2\pi^-$	Obelix
π ₁ (1600)	η΄π	$\pi^{-}Be \to \eta' \pi^{-} \pi^{0}Be \\ \pi^{-}p \to \pi^{-}\eta' p$	VES E852
	$b_1\pi$	$\pi^{-}Be \rightarrow \omega\pi^{-}\pi^{0}Be$ $\bar{p}p \rightarrow \omega\pi^{+}\pi^{-}\pi^{0}$ $\pi^{-}p \rightarrow \omega\pi^{-}\pi^{0}p$	VES CBAR E852
	ρπ	$ \begin{aligned} \pi^- Pb &\to \pi^+ \pi^- \pi^- X \\ \pi^- p &\to \pi^+ \pi^- \pi^- p \end{aligned} $	COMPASS E852
	$f_1\pi$	$\pi^{-}p \rightarrow p\eta\pi^{+}\pi^{-}\pi^{-}$ $\pi^{-}A \rightarrow \eta\pi^{+}\pi^{-}\pi^{-}A$	E852 VES
π ₁ (2015)	$f_1 \pi$ $b_1 \pi$	$\pi^{-}p \to \omega \pi^{-} \pi^{0} p$ $\pi^{-}p \to p \eta \pi^{+} \pi^{-} \pi^{-}$	E852

Light hadrons with exotic quantum numbers

• Lightest spin-exotic: 1^{-+} hybrid $\Rightarrow 1.7 \sim 2.1 GeV/c^2$

 1^{-+}

 2^{+-}

Phys.Rev.D 88 (2013) 9, 094505

 $\Gamma(J/\psi\to\gamma H){\sim}O(\alpha\alpha_s^3)$

 $m_{\pi} = 392 \,\mathrm{MeV}$ $24^3 \times 128$

isoscalar

isovector

Observation of Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

An isoscalar 1^{-+} state, $\eta_1(1855)$, has been observed with statistical significance larger than 19σ

 $M = (1855 \pm 9^{+6}_{-1}) MeV/c^{2}; \quad \Gamma = (188 \pm 18\pm^{+3}_{-8}) MeV$ $B(J/\psi \to \gamma \eta_{1}(1855) \to \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$

- Mass is consistent with hybrid on LQCD
- Inspired many interpretations:
 - Hybrid? Molecule? Tetraquark?

$$\frac{Br(f_0(1500) \to \eta \eta')}{Br(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

 $\frac{Br(f_0(1710) \to \eta \eta')}{Br(f_0(1710) \to \pi \pi)} < 2.7 \times 10^{-3} @90\% C.L$

Opens a new direction to completing the picture of spin-exotics

PRL 129, 192002 (2022); PRL 130, 159901 (2023) (erratum) PRD 106,072012 (2022); PRD 107,079901 (2023) (erratum)

Observation of $\pi_1(1600)$ in $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$

2. **7** × 10⁹ ψ (3686) @BESIII [preliminary]

- Amplitude analysis of $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$ is performed
- $\pi_1(1600)$ is observed with significances > 17σ
- The J pc of $\pi_1(1600)$ is measured to be exotic 1^{-+}
 - \checkmark better than other assignments
- With significant Breit-Wigner phase motion
 - ✓ Evidence of $\pi_1(1600) \rightarrow \eta' \pi$ at CLEO-c is confirmed

[PR D84 112009 (2011)]

source	$M ({\rm MeV}/c^2)$	Γ (MeV)	$\mathcal{B}[\chi_{c1} \to \pi_1^{\pm} \pi^{\mp}] \times \mathcal{B}[(\pi_1^{\pm} \to \eta' \pi^{\pm}] \ (\times 10^{-4})$
CLEO-c [2]	$1670\pm30\pm20$	$240\pm50\pm60$	$2.9 \pm 0.5 \pm 0.6 \pm 0.1$
Our	$1711 \pm 10(\text{stat})^{+113}_{-6}(\text{syst})$	$404 \pm 16(\text{stat})^{+104}_{-11}(\text{syst})$	$4.10 \pm 0.12(\text{stat})^{+0.39}_{-0.29}(\text{syst})$

Observations of π_1 and η_1 in charmonium decays provide a new path to study 1⁻⁺

Glueball

- Glueballs: the most direct prediction of QCD
 - Color singlets emerge as a consequence of the gluon self interactions •
- Low-lying glueballs with ordinary J PC (0⁺⁺, 2⁺⁺, 0⁻⁺)
 - gluon is flavor-blind \Rightarrow No dominate decay mode \Rightarrow mixing with nearby $\mathbf{q} \mathbf{\bar{q}}$
 - Could be analogy to OZI suppressed decays of charmoniums ٠

[PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)]

- **Non** $q \bar{q}$ nature difficult to be established
 - ✓ Overpopulation, but QM assignment is difficult
 - ✓ Identification is model-dependent

⇒Systematical study is needed in the identification

pp double-Pomeron exchange: WA102, GAMS…

 $p\bar{p}$ annihilation: Crystal barrel, OBELIX...

Light Yang-Mills glueballs on lattice (quenched and unquenched results)

Scalar Glueball

Observed $f_0(1370)$, $f_0(1500)$, $f_0(1710)$

- $\checkmark\,$ Supernumerary scalars suggest additional degrees of freedom
- ✓ However, mixing scenarios are controversial
- Flavor-blindness of glueball decays

$\Gamma(G \to \pi\pi: K\bar{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$

- $G \rightarrow \eta \eta'$ decay is expected to be suppressed
- Scalar glueball expected to be suppressed $\Gamma(G \rightarrow \eta \eta') / \Gamma(G \rightarrow \pi \pi) < 0.04$ [PR D 92, 121902; PR D 92, 114035]
- **f**₀(1710): mass consistent with LQCD
 - Measured $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$

BESIII [PRD 87 092009, PRD 92 052003, PRD 98 072003]

New inputs from J $/\psi \rightarrow \gamma \eta \eta$

Significant $f_0(1500)$ $\frac{Br(f_0(1500) \to \eta \eta')}{Br(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$

• Absence of $f_0(1710)$

 $\frac{Br(f_0(1710) \to \eta \eta')}{Br(f_0(1710) \to \pi \pi)} < 2.7 \times 10^{-3} @90\% C.L$

Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball

5

Tensor Glueball

 $egin{aligned} &\Gamma(J/\psi o \gamma G_{2^+}) = 1.01(22) keV \ &\Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2} \end{aligned}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

- *f*₂(2340): consistent with LQCD's calculation for the mass of a tensor glueball
- Experimental results

 $Br (J / \psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta) = (3.8^{+0.62}_{-0.65} + 2.37_{-2.07}) \times 10^{-5} \text{ BESIII PRD 87,092009 (201)}$ $Br (J / \psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \phi \phi) = (1.91 \pm 0.14^{+0.72}_{-0.75}) \times 10^{-4} \text{ BESIII PRD 93, 112011 (2016)}$ $Br (J / \psi \rightarrow \gamma f_2(2340) \rightarrow \gamma K_s^0 K_s^0) = (5.54^{+0.34}_{-0.40} + 3.82_{-1.49}) \times 10^{-5} \text{ BESIII PRD 98,072003 (2018)}$ $Br (J / \psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \dot{\eta} \dot{\eta}) = (8.67 \pm 0.7^{+0.16}_{-1.67}) \times 10^{-6} \text{ BESIII PRD 105,072002 (2022)}$

Resonance	$M(MeV/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$	$(2.40\pm 0.10^{+2.47}_{-0.18})$	28σ
$\eta(2100)$	2050^{+30+75}_{-24-26}	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	22σ
X(2500)	$2470^{+15+101}_{-19-23}$	$230^{+64}_{-35}{}^{+56}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8 σ
$f_0(2100)$	2101	224	$(0.43\pm 0.04^{+0.24}_{-0.03})$	24 σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm 0.14^{+0.72}_{-0.73})$	11 σ
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

- More complicated due to the large number of tensor states in the mass region of 2.3GeV
 - More decay modes and coupled-channel analyses are desired

Pseudoscalar Glueball

Pseudoscalar meson spectrum

- ✓ Only η and η' (& radial excitations) from quark model
- ✓ A promising place to search for extra states

LQCD predicts: 0^{-+} glusball (2.3~2.6 GeV)

- \checkmark The first glueball candidate: ι (1440) (Split into η (1405) and η (1475))
 - Quark model predicts : only one pseudoscalar meson near 1.4 GeV
 - Theoretical interpretations :

 η (1475) \Rightarrow the first radial excitation of η

- η (1405) \Rightarrow the glueball candidate &&Mass incompatible with LQCD
- ✓ Little experimental information above 2 GeV
 - A glueball-like state X(2370)
- Production
 - $\Gamma(J/\psi \rightarrow \gamma G_{0^{-+}})/\Gamma_{total} = 2.31(80) \times 10^{-4}$, at the same level as 0^{-+} meson
- Decays
 - Possible guidance: OZI suppressed decays of η_c •
 - 3 pseudoscalar final state is a good place to look for Pseudoscalar glueball $(0^{-+} \rightarrow 2P \text{ is forbidden})$

 $\eta'(958)\pi\pi$

n'(958) K K

 $K\overline{K}\pi$

 $K\overline{K}\eta$

 $\eta\pi^+\pi^-$

```
\eta_c \rightarrow 3P in PDG
    Decays involving hadronic resonances
                         2.0 \pm 0.4 )%
                         1.73 \pm 0.35) %
```

```
Decays into stable hadrons
```

(7.1 ±	-0.4) %
(1.32±	- <mark>0.1</mark> 5) %
(1.6 ±	-0.4)%

No dominant decay **Flavor symmetric** 11

A glueball-like state X(2370)

- Discovered by BESIII in $J / \psi \rightarrow \gamma \pi^+ \pi^- \eta'$ decay in 2011
- Confirmed by BESIII in $J / \psi \rightarrow \gamma \pi^+ \pi^- \eta'$ and $J / \psi \rightarrow \gamma K K \eta'$
 - Not seen in $J / \psi \rightarrow \gamma \eta \eta \eta'$ [BESIII PRD 103 012009 (2021)], $J / \psi \rightarrow \gamma \gamma \phi$ [BESIII arXiv: 2401.00918]. Upper limits of BF are well consistent with predictions of 0⁻⁺glueball
- ■Mass consistent with LQCD prediction for 0⁻⁺glueball

Spin-parity determined to be 0^{-+} by $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ [BESIII PRL 132, 181901(2024)]

$X(2370)$: $J^{PC} = 0^{-+}$ with significance >9.8 σ
$M = 2395 \pm 11^{+26}_{-94} MeV$
$\Gamma = 188^{+18+124}_{-17} MeV$
$B(J/\psi \to \gamma X(2370) \to f_0(980)\eta' \to K_0^s K_0^s \eta') = 1.32 \pm 0.22^{+2.85}_{-0.84}$

PRL 117, 042002 (2016) PRL 106, 072002(2011)

New (preliminary) results on X(2370)

- *X*(2370) observed in the gluon-rich *J* / ψ radiative decays
- Mass and production rate are consistent with LQCD
- Decay modes $X(2370) \rightarrow \pi \pi \eta'$, $KK\eta'$, $K_s^0 K_s^0 \pi^0$, $\pi^0 \pi^0 \eta$, $a_0(980) \pi^0$ observed, in analog to η_c

Such high similarity between the X(2370) and η_c decay modes strongly supports the glueball interpretation of the X(2370)

Partial Wave Analysis of $J/\psi \rightarrow \gamma K_s^0 K_s^0 \pi^0$

- Mass Independent PWA : Disentangle J^{PC} in each bin
 - Valuable inputs to develop models
 - Two 0⁻⁺ around 1.4 GeV/c² in $(K_s^0 K_s^0)_{s wave} \pi^0$ and $(K_s^0 \pi^0)_{p wave} K_s^0$ partial waves
- Mass Dependent PWA with BW to extract resonances
 - Dominated by 0^{-+}
 - Two BWs η (1405) and η (1475) around 1.4 GeV is needed
- Consistency between MI and MD results
- **Theorists attempt to reveal** $\eta(1405)/\eta(1475)$ pole structure
 - further study are needed

Phys.Rev.D 107, L091505 (2023) Phys.Rev.D 109, 014021 (2024)

Partial Wave Analysis of $J/\psi \rightarrow \gamma \gamma \phi$

The decays $J / \psi \rightarrow \gamma X, X \rightarrow \gamma V$ ($V = \rho, \omega, \phi$) serve as flavor filter •unravelling quark contents of the intermediate resonances

Main challenges

- high background level (55%)
 - non- ϕ background (46.7%)
 - ϕ background (8.2%)

Innovative point

• non- ϕ background (Q factor method, CLAS)

$$Q_i = \frac{F_s(\vec{\xi}_r, \hat{\alpha}_i)}{F_s(\vec{\xi}_r, \hat{\alpha}_i) + F_b(\vec{\xi}_r, \hat{\alpha}_i)}$$

• φ background (ML based multi-dimensional reweighting method, BESIII)

arXiv: 2401.00918

Partial Wave Analysis of $J/\psi \rightarrow \gamma \gamma \phi$

- η (1405) is observed, while η (1475) can not be excluded
- $X(1835) \rightarrow \gamma \phi$ suggests its assignment of second η' excitation
- $\eta_c \rightarrow \gamma \phi$ is observed for the first time, the first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \phi$ unfavored their glueball interpretations. [PRD 108, 014023 (2013); arXiv: 2404.01564]
- No evidence of η_1 (1855) and X(2370), well consistent with the predictions for hybrid/glueball. [PRD 107, 114020(2023); NPA 1037, 122683]

Summary and outlook

BESIII experiment is an excellent laboratory to study light meson physics and search for light QCD exotic states

Exciting results from new J / ψ and ψ data are presented

- pesudoscalar state : $\eta(1405)$, X(2370)
- 1^{-+} spin exotics state: $\eta_1(1855)$, $\pi_1(1600)$

BESIII is taking data since 2008. It will continue to run ~2030

• BEPCII-U: 3x upgrade on luminosity; Ecms expanded to 5.6 GeV (2024-2028)

High statistics data bring us more opportunities and challenges!

Prospects of spin-exotics at BESIII

Uniqueness, enrichment and complementary

• High statistics gluon-rich environment: 10 B J/ ψ , 2.7 B ψ' , a lot of χ_{cl}

Isoscalar: $\eta_1(1855)$

- Decay properties
 - $J/\psi \rightarrow \gamma + \pi a_1, \eta f_1, K_1 \overline{K}, VV, \dots$ $\chi_{c1} \rightarrow \pi + \pi b_1, \pi f_1, \pi \eta', \dots$
- Production properties
 - $J/\psi \rightarrow \omega \eta \eta'$, $\phi \eta \eta'$,
 - $\chi_{c1} \rightarrow \eta + \eta \eta'$,
- Where is $\eta_1^{(\prime)}$
- Other partners: 2⁺⁻,
- Analog in cc

Isovector: $\pi_1(1600)$

• $J/\psi \rightarrow \rho \eta' \pi$,

- - LQCD predicted major decay modes

1.00

■ Lattice QCD predictions for glueball masses and BR:

- 0⁺⁺ ground state: 1.5-1.7 GeV/c²; $B(J/\psi \rightarrow \gamma G_{0^{++}}) = 3.8(9) \times 10^{-3}$
- 0^{-+} ground state: 2.3-2.4 GeV/c²; $B(J/\psi \rightarrow \gamma G_{0^{-+}}) = 2.31(80) \times 10^{-4}$
- 2⁺⁺ ground state: 2.3-2.6 GeV/c²; $B(J/\psi \rightarrow \gamma G_{2^{++}}) = 1.1(2) \times 10^{-2}$

- For 5 golden PPP decay modes: similar number of events under the X(2370) peak No dominant decay modes, similar to $\eta_c!$
- Naïve estimation on the BR of each mode \sim 5-10%, i.e., partial width of each decay mode is \sim 10MeV!
- This would be very hard to be explained if there were quark content (qqbar, qqg, or multiquark) in X(2370) for OZI allowed decays:
 - Typical OZI allowed decay partial width ~100MeV (see all PDG mesons)
 - OZI allowed decays usually have dominant decay modes
- X(2370) decay should be OZI suppressed decays as η_{c} , i.e., via gluons!

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

- The η' is reconstructed from $\gamma\pi^+\pi^-$ & $\eta\pi^+\pi^-,\eta$ from $\gamma\gamma$
- Partial wave analysis of $J/\psi \rightarrow \gamma \eta \eta'$
 - Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$ are constructed using the covariant tensor formalism[Eur. Phys. J. A 16, 537] and GPUPWA [J. Phys. Conf. Ser. 219, 042031(2010)] *

*World's first PWA framework with GPU acceleration

• An isoscalar 1^{-+} , $\eta_1(1855),$ has been observed in $J/\psi\to\gamma\eta\eta'$ (>19 σ)

$$\begin{split} \mathsf{M} &= \left(1855 \pm 9^{+6}_{-1}\right) \mathsf{MeV}/c^2, \mathsf{\Gamma} = \left(188 \pm 18^{+3}_{-8}\right) \mathsf{MeV}/c^2 \\ \mathsf{B}(\mathsf{J}/\psi \to \gamma \eta_1 (1855) \to \gamma \eta \eta') &= \left(2.\,70 \pm 0.\,41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$

PRL 129 192002(2022), PRD 106 072012(2022)

• Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1. 7~2. 1 GeV/c²)

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

 Angular distribution as a function of M(ηη') expressed model-independently

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$$

 Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:

 $\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

 $\sqrt[]{4\pi} \langle Y_1^0 \rangle = 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos\phi_{D_0},$$

 $\sqrt{4\pi}\langle Y_3^0 \rangle = \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{1}{7}(6D_0^2 - 4D_1^2 + D_2^2).$$

- Narrow structure in $\langle Y_1^0 \rangle$
 - $\succ \mbox{Cannot}$ be described by resonances in $\gamma\eta(\eta')$
 - * $\eta_1(1855) \rightarrow \eta\eta'$ needed

Study of $J / \psi \rightarrow \gamma K_s^0 K_s^0 \eta$

In the 2D mass plot of M_{KK} vs $M_{KK\eta}$ in the BESIII paper on the spin-parity determination of the X(1835), qualitatively, we can clearly observe:

- > In the upper M_{KK} mass band of 1.5-1.7GeV range, clear signals of both X(2370) and η_c .
- > In the lower M_{KK} mass band of f0(980), no X(2370), nor η_c .

Background treatment

The remaining background can be divided into two categories

$\succ \phi$ background

Dominated by J/ $\psi \rightarrow \phi \pi^0 \pi^0$, which has rich structures. Difficult to be modeled with MC.

\succ non- ϕ background

 $oldsymbol{\phi}$ sideband is tricky:

e.g. $J/\psi \rightarrow \gamma \eta (1405), \eta (1405) \rightarrow \pi_0 K^+ K^-, \pi_0 \rightarrow \gamma \gamma$

(1) If one of the photons $\gamma_2 \gamma_3$ from the π_0 decay is soft (say, γ_3), the γ_2 will be energetic and M($\gamma_2 K^+ K^-$) will be at the η (1405) mass.

(2) The K^+K^- mass distribution from $\eta (1405) \rightarrow \pi_0 K^+K^-$ peaks nears K^+K^- threshold, which is very close to ϕ mass.

Background treatment

$\succ \phi$ background

Using a Machine learning based multi-dimensional reweighting method to get "data-like" MC of $J/\psi \rightarrow \phi \pi^0 \pi^0$

- Select J/ $\psi \rightarrow \phi \pi_0 \pi_0$ events from data⁻
- Generate $J/\psi \rightarrow \phi \pi_0 \pi_0 PHSP MC$
- Perform multi-dimensional reweighting (ML)
- The distributions of weighted MC are well consistent with data
- The weighted $J/\psi \rightarrow \phi \pi_0 \pi_0$ MC after $J / \psi \rightarrow \gamma \gamma \phi$ event selection will be used for background estimation

* Beijiang. Liu, Xian Xiong, Guoyi Hou, Shiming Song, and Lin Shen. PoS ICHEP2018, 160 (2019). http://doi.org/10.5281/zenodo.1451985

Background treatment

Q-factor method: multi-dimensional sideband subtraction [JINST 4 P10003 (2009)

Generalize the 'sideband' subtraction method to higher dimensions without requiring the data to be divided into bins, successfully used in BAM-00221, Phys. Rev. D 100, 052012, by Malte Albrecht et al.

- ▶ In multi-dimensional phase space of $J/\psi \rightarrow \gamma \gamma \phi$, a so called Q-weight is given event-by-event, representing the probability of signal.
- A set of coordinates $\vec{\xi}$ must be defined ($c \circ s \theta(\gamma_{rad}), c \circ s \theta(\phi), c \circ s \theta(K^+), M(\gamma_{hi} gh\phi), M(\gamma_{l} \circ w\phi)$). For event *i*, we find 200 of its nearest neighboring events in PHSP. The normalization Δ_k by default is set to the largest possible distance between two events in the coordinate ξ_k , and fit the reference coordinate $\vec{\xi}_r = M(K^+K^-)$.

$$d_{i,j}^2 = \sum_{k \neq r} \left[\frac{\xi_k^i - \xi_k^j}{\Delta_k} \right]^2$$

▶ Q-factor for event *i*, is determined by the fitting results and its $M(K^+K^-)$.

$$Q_{i} = \frac{F_{s}(\vec{\xi}_{r}, \hat{\alpha}_{i})}{F_{s}(\vec{\xi}_{r}, \hat{\alpha}_{i}) + F_{b}(\vec{\xi}_{r}, \hat{\alpha}_{i})}$$

***CLAS experiment:** Journal of Instrumentation, 4(10):P10003, 2009. ***CB/LEAR experiment:** The European Physical Journal C, 75(3), 2015.