

The Baryon LCDA from Lattice QCD

华俊 **O/B LPC South China Normal University 2024.10.28 第⼆⼗⼀届全国重味物理和CP破坏研讨会**

- The visible matter of the Universe is mainly made of baryons.
- Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.

 $\overline{\mathcal{A}}$

- Sakharov conditions for Baryogenesis:
	- 1) Baryon number violation
	- 2) C and CP violation
	- 3) Out of thermal equilibrium
- CPV well established in K, B and D mesons
- But CPV never established in any baryon

 \sim

 \equiv \equiv

 \sim \sim

……

CP violation in Baryon

 $\frac{1}{2}$

 $\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right)$

 \sim

 \triangleright Light meson LCDAs have been extensively pursued: (1970s - now)

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

● **Asymptotic LCDAs**

Chernyak, Zhitnitsky, 1977; Lepage, Brodsky, 1979; Efremov, Radyushkin, 1980

Dyson-Schwinger Equation

Chang, Cloet, Cobos-Martinez, Roberts, Schmidt, 2013; Gao, Chang, Liu, Roberts, Schmidt, 2014; Roberts, Richards, Chang, 2021

Sum rules

Chernyak, Zhitnitsky, 1982; Braun, Filyanov, 1989; Ball, Braun, 1998; Khodjamirian, Mannel, Melcher, 2004; Lu, Wang, Hao, 2006; Ball,, Lenz, 2007;

Inverse Method

Li, 2022

● **Models**

Arriola, Broniowski, 2002, 2006; Zhong, Zhu, Fu, Wu, Huang, 2021; **Global Fits**

Stefanis, 2020; Cheng, Khodjamirian, Rusov, 2020; Hua, Li, Lu, Wang, Xing, 2021

Lattice with current-current correlation Bali, Braun, Gläßle, Göckeler, Gruber, 2017, 2018;

Lattice with OPE

Martinelli, Sachrajda, 1987; Braun, Bruns, et al., 2016; RQCD collaboration, 2019, 2020

Lattice with LaMET

Zhang, Chen, Ji, Jin, Lin, 2017; LP3 Collaboration, 2019; Zhang, Honkala, Lin, Chen, 2020; Lin, Chen, Fan, Zhang2, 2021; LPC Collaboration, 2021, 2022

● **Quantum Computing**

QuNu Collaboration, 2023, 2024

- Ø Light Baryon LCDAs: (1980s now)
- **Asymptotic LCDAs**

Chernyak, Zhitnitsky, 1983

Sum rules

King, Sachrajda, 1987; Chernyak, Ogloblin, Zhitnitsky 1989; Stefanis, Bergmann, 1993; Braun, Fries, Stein 2000; Braun, Lenz, Wittmann 2006;

. <u>.</u> .

Model parametrization

Bell, Feldmann, Wang, Matthew 2013

Lattice with OPE

QCDSF collaboration, 2008, 2009; RQCD collaboration, 2016, 2019

What's next \cdots ?

- **Lattice is powerful**
- Moments is not enough

LQCD is formulated as a Feynman path integral on a discrete 4D Euclidean grid. Numerical simulations based on a QCD Lagrangian with discrete from:

- $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} m)\psi \frac{1}{4}G^{a}_{\mu\nu}G^{a,\mu\nu}$ \bullet Gluon fields on links
- \triangleright lattice spacing $a \rightarrow UV$ regulator;
- \triangleright box length $L \rightarrow \text{IR}$ regulator;
- \triangleright Chiral extrapolation ($M_\pi \rightarrow 135$ MeV);
- S Numerical sampling with highly dimension $n_s^3 \times n_t \times N_{\text{color}} \times N_{\text{spin}}$
- Building blocks: ensembles of gauge configurations; quark propagators
- Hadron & interactions put in as external probes: N-point correlation function
-
- Quark fields on sites

10

Large Momentum Effective Theory (LaMET)

- Instead of taking $P^z \to \infty$ calcuation, one can perform an expansion for large but finite P^z :
- For meson LCDA: $\tilde{q}(x, P^z, \mu) = \int \frac{dy}{dx}$ \mathcal{Y} $C(x, y, P^z, \mu) q(y, \mu) + O(\sigma)$ Λ^2 , M^2 $\frac{1}{(P^z)^2}$ Matching kernel Quasi-DA LCDA High power correction *X.Ji PRL110 262002 (2013)*

- \triangleright Twists for baryon LCDA:
	- Octet baryon (3 terms for leading twist):

C.Han JHEP 07019 (2024) V.L.C & I.R.Z NPB 24652(1984) G.R.Farrar et.al. NPB 311585(1989)

 $\langle 0|f_{\alpha}(z_1n)g_{\beta}(z_2n)h_{\alpha}(z_3n)|B(P_{B},\lambda)\rangle$ $=\frac{1}{4}f_V\left[\left(\rlap{\,/}P_BC\right)_{\alpha\beta}\left(\gamma_5u_B\right)_\gamma V^B\left(z_in\cdot P_B\right)+\left(\rlap{\,/}P_B\gamma_5C\right)_{\alpha\beta}(u_B)_\gamma A^B\left(z_in\cdot P_B\right)\right]$ $+\frac{1}{4}f_T(i\sigma_{\mu\nu}P_B^{\nu}C)_{\alpha\beta}(\gamma^{\mu}\gamma_5 u_B)_{\gamma}T^B(z_in\cdot P_B)\,,$

• Decuplet baryon (4 terms for leading twist): $\langle 0|f_{\alpha}(z_1n)g_{\beta}(z_2n)h_{\gamma}(z_3n)|B(P_B,\lambda)\rangle$ $=\frac{1}{4}\lambda_V\big[(\gamma_\mu C)_{\alpha\beta}\Delta_\gamma^\mu V^B(z_in\cdot P_B)+(\gamma_\mu\gamma_5 C)_{\alpha\beta}(\gamma_5\Delta^\mu)_{\gamma}A^B(z_in\cdot P_B)\big]$ $-\frac{1}{8}\lambda_T(i\sigma_{\mu\nu}C)_{\alpha\beta}(\gamma^{\mu}\Delta^{\nu})_{\gamma}T^B(z_in\cdot P_B)-\frac{1}{4}\lambda_{\varphi}\bigg[(i\sigma_{\mu\nu}C)_{\alpha\beta}\bigg(P_B^{\mu}\Delta^{\nu}-\frac{1}{2}M_B\gamma^{\mu}\Delta^{\nu}\bigg)_{\gamma}\varphi^B(z_in\cdot P_B)\bigg|_{\gamma\geq 0}$

Lattice Setup

 \sim

 \sim

 $\qquad \qquad =\qquad \qquad =\qquad \qquad =\qquad \qquad$

• Nonlocal 2pt related to baryon quasi DA:

$$
\begin{aligned} C_2\Big(z_1,z_2;t,\vec{P}\Big) &= \int d^3x e^{-i\vec{P}\vec{x}} \langle 0|\hat{O}_\gamma(\vec{x},t;z_1,z_2)\times \hat{\bar{O}}_{\gamma'}(0,0;0,0) T^{\gamma\gamma'}|0\rangle \\ \hat{O}_\gamma(\vec{x},t;z_1,z_2) &= \epsilon^{ijk} W^{ii'}(\vec{x},\vec{x}+z_1 n_z) u_\alpha^{i'}(\vec{x}+z_1 n_z,t) \\ &\times \tilde{\Gamma}_{\alpha\beta} W^{jj'}(\vec{x},\vec{x}+z_2 n_z) d_\beta^{j'}(\vec{x}+z_2 n_z,t)\times s_\gamma^k(\vec{x},t) \end{aligned}
$$

CLQCD

Ensembles:

$$
\tilde{\Gamma} = C\gamma_5 \gamma^t / \gamma^z
$$

$$
T = (1 + \gamma^4) / 2
$$

• Lattice setup:

• Renormalized quasi-DA $\tilde{\psi}(z_1, z_2, P^z)$ with fixed z_1 (Renormalized by ratio scheme)

• Renormalized quasi-DA $\tilde{\psi}(z_1, z_2, P^z)$ with fixed z_1 (Renormalized by ratio scheme)

Ø Two symmetries for Quasi-DA:

• iso-spin symmetry for "u, d" quarks:

$$
\tilde{\phi}(z_1,z_2)=\tilde{\phi}(z_2,z_1)
$$

- The constrain by real $\tilde{\phi}(x_1, x_2)$: $\tilde{\phi}(z_1, z_2) = \tilde{\phi}^*(-z_1, -z_2).$
- $1 = 3 = 6^* = 8^*$ $2 = 4^* = 5 = 7^*$ □ Thus for these areas: only area 1,2 are independent

$$
\mathbf{\Box} \; \tilde{\phi}(z_1 = -z_2)_{lm} = 0
$$

Ø Renormalization scheme:

• Perturbative 0 momentum quasi-DA:

$$
\hat{M}_p(z_1, z_2, 0, 0, \mu) = 1 + \frac{\alpha_s C_F}{2\pi}
$$

$$
\left[\frac{1}{8}\ln\left(\frac{z_1^2\mu^2e^{2\gamma_E}}{4}\right) + \frac{1}{8}\ln\left(\frac{z_2^2\mu^2e^{2\gamma_E}}{4}\right) + \frac{1}{4}\ln\left(\frac{\sqrt{(z_1 - z_2)^2}\mu^2e^{2\gamma_E}}{4}\right) + 4\right]
$$

C. Han et.al. JHEP12044(2023)

1 pole at $z_1 = z_2$

• Hybrid scheme need a match with the perturbative quasi-DA

At least $a < 0.06$ fm to apply hybrid scheme

• For simplification: Ratio scheme $\frac{\tilde{\psi}(z_1, z_2, P^z, a)}{\tilde{\psi}(z_1, z_2, P^z, a)}$

 $\widetilde{\psi}(z_1, z_2, P^z = 0, a)$

\triangleright Extrapolation & Fourier transformation(1D):

- For meson LCDA:
	- Asymptotic in momentum space:

$$
F(x) = cx^{d_1}(1-x)^{d_2}
$$

Analytic FT then simplify

• Extrapolation form in coordinate space

$$
H_m^{\rm R}(z, P_z) = \left[\frac{c_1}{(i\lambda)^a} + e^{-i\lambda} \frac{c_2}{(-i\lambda)^b}\right] e^{-\lambda/\lambda_0}
$$

2-D Effective Matching

• Renormalized quasi-DA in momentum space $\tilde{\psi}(x_1, x_2, P^z)$ (Renormalized by ratio scheme)

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

2-D Effective Matching

Ø LaMET factorization for Baryon LCDA:

$$
\tilde{\phi}(x_1, x_2) = \int_0^1 dy_1 \int_0^{1-y_1} dy_2 \underbrace{\tilde{C}(x_1, x_2, y_1, y_2)}_{\text{max}} \tilde{\phi}(y_1, y_2) + \mathcal{O}\Big(\frac{1}{(x_1 P^z)^2}, \frac{1}{(x_2 P^z)^2}, \frac{1}{[(1 - x_1 - x_2)P^z]^2}\Big)
$$

• Matching kernel:

$$
C(x_1, x_2, y_1, y_2, \mu) = \delta(x_1 - y_1) \delta(x_2 - y_2)
$$
\n
$$
+ \frac{\alpha_s C_F}{2\pi} \left[\left(\frac{1}{4} C_2 (x_1, x_2, y_1, y_2) - \frac{7}{8} \frac{-1}{|x_1 - y_1|} \right) \delta(x_2 - y_2) + \left(\frac{1}{4} C_2 (x_2, x_1, y_2, y_1) - \frac{7}{8} \frac{-1}{|x_2 - y_2|} \right) \delta(x_1 - y_1) + \left(\frac{1}{4} C_3 (x_1, x_2, y_1, y_2) + \frac{1}{4} C_3 (x_2, x_1, y_2, y_1) - \frac{3}{4} \frac{-2}{|x_1 - y_1 - x_2 + y_2|} \right) \delta(x_1 + x_2 - y_1 - y_2) \right]_0^{\sigma}
$$
\n
$$
[g(x_1, x_2, y_1, y_2)]_{\oplus} = g(x_1, x_2, y_1, y_2) - \delta(x_1 - y_1) \delta(x_2 - y_2) \int dz_1 dz_2 g(z_1, z_2, y_1, y_2)
$$
\n
$$
C.Han et al. JHEP 12 044 (2023), JHEP 07 019 (2024)
$$
\n24

2-D Effective Matching

Ø LaMET factorization for Baryon LCDA:

$$
\tilde{\phi}(x_1, x_2) = \int_0^1 dy_1 \int_0^{1-y_1} dy_2 \overline{C(x_1, x_2, y_1, y_2)} \phi(y_1, y_2) + \mathcal{O}\Big(\frac{1}{(x_1 P^z)^2}, \frac{1}{(x_2 P^z)^2}, \frac{1}{[(1 - x_1 - x_2)P^z]^2}\Big)
$$

• Inverse matching:

 $C(x_1, x_2, y_1, y_2) \rightarrow 4$ Dimensional tensor \rightarrow Reduce to 2D matrix \rightarrow inverse

• Iterative matching:

$$
\tilde{\phi}(x_1, x_2) = \phi(x_1, x_2) + \frac{\alpha_s C_F}{2\pi} \int_0^1 dy_1 \int_0^{1-y_1} dy_2 c^{(1)}(x_1, x_2, y_1, y_2) \phi(y_1, y_2) + \mathcal{O}(\alpha_s^2)
$$
\nThe difference between $\tilde{\phi}(x_1, x_2)$ and $\phi(x_1, x_2)$ introduces error only at higher order\n
$$
\phi(x_1, x_2) = \tilde{\phi}(x_1, x_2) - \frac{\alpha_s C_F}{2\pi} \int_0^1 dy_1 \int_0^{1-y_1} dy_2 c^{(1)}(x_1, x_2, y_1, y_2) \tilde{\phi}(y_1, y_2) + \mathcal{O}(\alpha_s^2)
$$

Summary and outlook

 \triangleright We made the first attempt to implement the numerical computation of baryon LCDA in the LaMET framework.

- \triangleright The 3-particle distribution cased 3D structure complexity in several parts:
	- Hybrid renormalization (Match with Perturbative Quasi)
	- Extrapolation and Fourier transformation
	- Matching implementation
	- \Box Calculation with smaller lattice spacing (at least < 0.6 fm)
	- \Box Calculation for all leading twist structure Proton and Lambda LCDA
	- \Box High twist ...

Thanks For Your Attention!