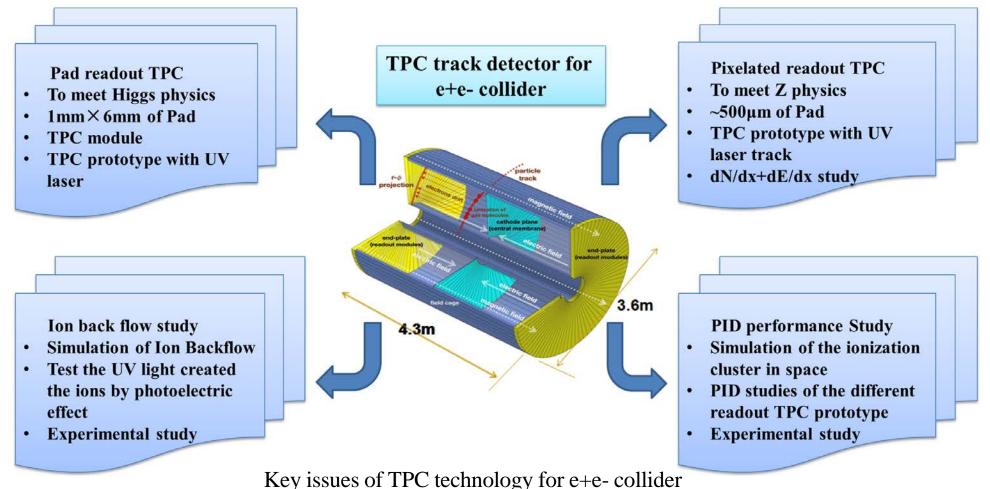


Key issues of TPC for CEPC

Huirong Qi CEPC Track meeting, 2024.02.15

Brief reminder about CEPC


- CEPC operation stages: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Auxiliary requirements, if any, are optional.

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2×10^7 Gy [11].

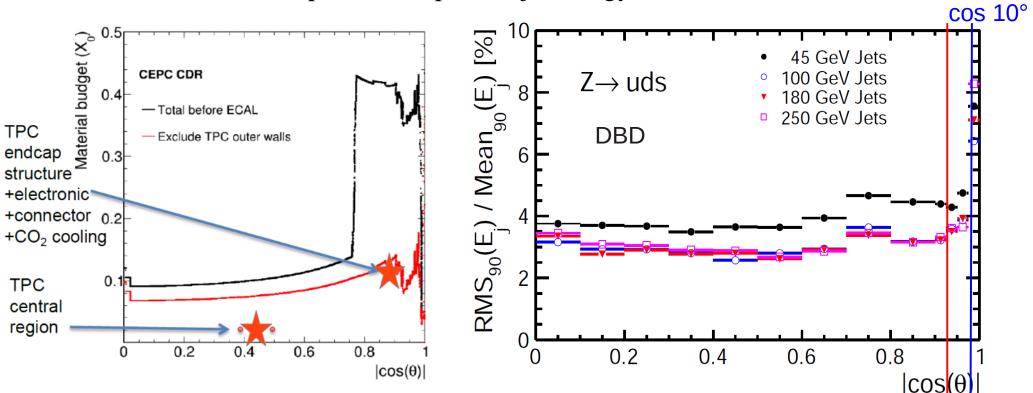
Motivation: TPC requiremetns from e+e- Higgs/EW/Top factories

- TPC can provide hundreds of hits with high spatial resolution compatible, with PFA design (low X_0)
 - $\sigma_{1/pt} \sim 10^{-4}$ (GeV/c)⁻¹ with TPC alone and $\sigma_{point} < 100 \mu m$ in r ϕ
- Provide dE/dx and dN/dx with a resolution <4%
 - Essential for Flavor physics @ Tera Z run

• TPC as the main tracker detector to satisfy the physics requirements :

- For Higgs run, W and top running, no problem for all TPC readout technologies.
 - Central Tracking **is entrusted to a pad readout TPC detector**.
- For high luminosity (2×10^{36}) Z pole run:
 - Pixelated readout TPC is a good option at high luminosity on the circular e+e- collider.
 - The gating will not be possible, so we need an ion back flow suppression without gating R&D (double or triple mesh/mutil-Mesh, graphene membrane...)
 - Some intense R&D program has to be addressed.

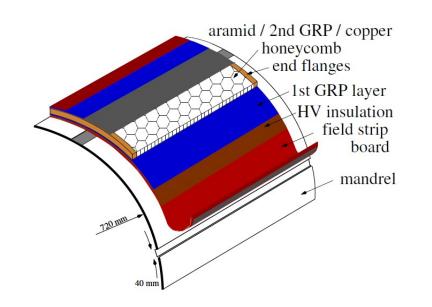
TPC key parameters for Higgs run

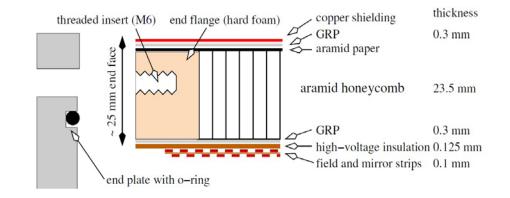

Parameters				
B-field	3.0T without any E $ imes$ B effect			
Geometrical parameters	r _{in}	r _{out}	Z	
	0.6m	1.8m	2.5m	
Solid angle coverage	Up to $\cos\theta \simeq 0.96$			
TPC material budget	\simeq 0.05 X ₀ including outer fieldcage in r			
	< 0.25 X ₀ for readout endcaps in z			
Number of pads	$\simeq 10^6/1000$ per endcap			
Pad pitch/ NO. of Padrows layers	\simeq 1 \times 6 mm ² / 200 points per track in r ϕ			
σ _{point} in rφ	≃ 60 μm for zero drift, ≤ 100 μm overall			
σ _{point} in rz	\simeq 0.4 – 1.4 mm (for zero – full drift)			
2-hit separation in rφ	≃ 2 mm			
dE/dx resolution	≤ 4 % (Pad readout), ≤ 3 % (Pixelated readout)			
Momentum resolution at B = 3.0 T	$\delta(1/p_t) \simeq 1 \times 10^{-4}/\text{GeV/c}$ (TPC only)			

Material Budget – TPC – Very light

- TPC as the main tracker detector
 - A low material budget is a strong argument for a TPC
 - $\leq 5\% X_0$ in the barrel region
 - $\leq 25\% X_0$ in the endcap region
 - Increased material in endcap has no impact on jet energy resolution

		$45~{ m GeV}$	$100~{\rm GeV}$	$250~{\rm GeV}$
	$15\% X_0$	$0.28{\pm}0.01$	$0.32{\pm}0.01$	$0.47{\pm}0.02$
	$30\% X_0$	$0.30{\pm}0.01$	$0.31{\pm}0.01$	$0.47 {\pm} 0.02$
	$45\% X_0$	$0.30{\pm}0.01$	$0.32{\pm}0.01$	$0.52{\pm}0.02$
~	$60\% X_0$	$0.32{\pm}0.01$	$0.33{\pm}0.01$	

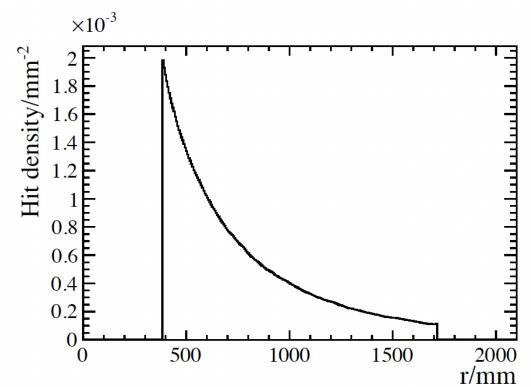

cos 40

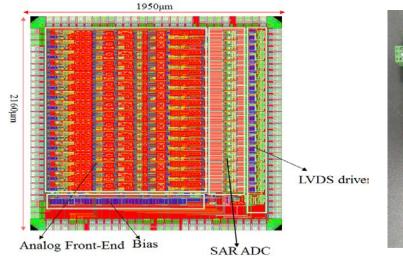



TPC – PRC2010 report

Material Budget – TPC – Validation

- Barrel of the material budget
 - Material budget of $1.2\%X_0$ was reached
 - Field homogeneity: $10^{-4} < \Delta E/E < 10^{-3}$
 - Operation gas (**negligible**): 1.2kg/m³
- Endcap of the material budget
 - Readout plane, electronics, detector: $<5\%X_0$
 - Cooling: $<2\% X_0$
 - Power cables: $<10\% X_0$




• TPC occupancy

- Low voxel occupancy : 1E-5 to 1E-6
- At 2 E36 with Physics event only, even bunch distribution.
- Pad readout $(1 \text{mm} \times 6 \text{mm})$
 - inner most occupancy 1E-4
- Pixelated readout ($55um \times 55um$)
 - much LOWER inner most occupancy ~1E-6
- Pixelated readout can easily handle a high hits rate at Z
 - The test beam showed GridPix TPC prototype can handle up to 2.6M hits/s per chip

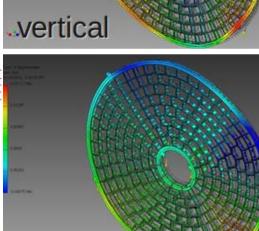
• Power consumption

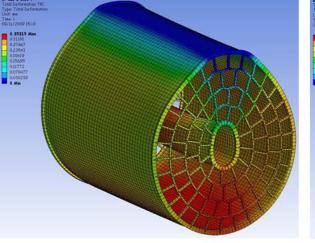
- Pad readout TPC@1mm×6mm@IHEP
- Total channels: **10**⁶
- Total power: <12 kW
 - 48mW/cm^2
 - WASA ASIC chip: 3.5mW/ch@40 MS/s

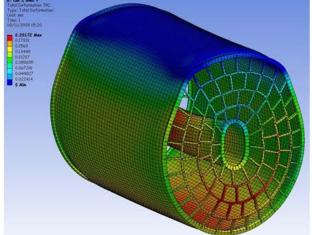


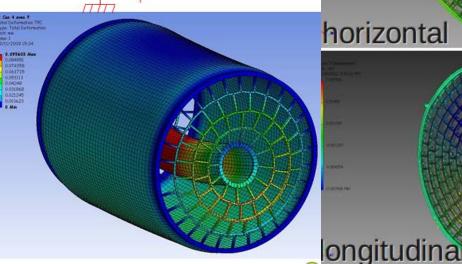
	AGET	PASA+ALTRO	Super-ALTRO	SAMPA
TPC	T2K	ALICE	ILC	ALICE upgrade
Pad尺寸	6.9x9.7 mm ²	$4x7.5 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
通道数	1.25 x 10 ⁵	5.7x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
读出结构	MicroMegas	MWPC	GEM/MicroMegas	GEM
增益	0.2-17 mV/fC	12 mV/fC	12-27 mV/fC	20/30 mV/fC
成型方式	$CR-(RC)^2$	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴
达峰时间	50 ns-1us	200 ns	30-120 ns	80/160 ns
ENC	850 e @ 200ns	385 e	520 e	482 e @ 180ns
波形采样方式	SCA	ADC	ADC	ADC
采样率	1-100 MSPS	10 MSPS	40 MSPS	10 MSPS
精度	12 bit(external)	10 bit	10 bit	10 bit
功耗	<10 mW/ch	32 mW/ch	47.3 mW/ch	17 mW/ch
CMOS工艺	350 nm	250 nm	130 nm	130 nm

Various Possibilities of Mounting TPC


TPC Material and Weight


- PCB: 2×530 kg (on basis of 7kg/module, FR4)
- Endplate: 2×370 kg (Aluminium)
- Field Cage: 265 kg




Maximum deflection of the model: ~0.00867mm/100 N

1111

ITT

Cost – TPC

• **TPC cost estimation**

• Chamber

- Endplate
- Electronics
- Alignment
- HV
- Gas system

			Detector concept/ Detector items	Unit	Unit cost (RMB)	Quantity	total cost (RMI	
lumber			CEPC					
3.2			Time Projection Chamber				18000.0	
	3.2.1		Chamber 3600.00					
		3.2.1.1	Fieldcage		1200.00	1	1200.0	
		3.2.1.2	Connector		800.00	1	800.0	
		3.2.1.3	Barrel		600.00	1	600.0	
		3.2.1.4	HV test bef. Assembly		400.00	1	400.0	
		3.2.1.5	Support board		600.00	1	600.0	
3.2.2			Endplate	Endplate 2500.0				
		3.2.2.1	MPGD detector		800.00	1	800.0	
		3.2.2.2	Support board		600.00	2	1200.0	
		3.2.2.3	Readout bef. Assembly		2.50	200	500.0	
	3.2.3		Electronics				10000.0	
		3.2.3.1	FEE ASIC readout		0.012	200000		
		3.2.3.2	Cables		0.03	50000		
		3.2.3.3	Optical driver		0.03	50000	1500.0	
		3.2.3.4	Optical link, connectors		1.00	500		
		3.2.3.5	DAQ system		0.30	5000		
		3.2.3.6	Crate and controller		20.00	50	1000.0	
		3.2.3.7	Cooling system		1600.00	1	1600.0	
	3.2.4		Alignment and calibration	1			500.0	
		3.2.4.1	Calibration system		500.00	1	500.0	
	3.2.5		HV and Gas system				1400.0	
		3.2.5.1	HV and low power		600.000	1	600.0	
		3.2.5.2	Gas system		300.00	1	300.0	
		3.2.5.3	Slow control system		300.00	1	300.0	
		3.2.5.4	Shipping bef. Assembly		200.00	1	200.0	

TPC COST ESTIMATION (Unit: *10K RMB)

• TPC as the main track detector for CEPC

- Material budget of endplate/chamber $\sqrt{}$
- Occupancy √
- Optimization of pad size $\sqrt{}$
- Channels and power consumption $\sqrt{}$
- Cost estimation $\sqrt{}$
- Ions affect and distortion $\sqrt{\text{(need R&D for Z pole)}}$
- Improved dE/dx+dN/dx $\sqrt{\text{(need R&D Z pole)}}$

Many thanks!