

Track Reconstruction with Quantum Algorithms at High Energy Colliders

IHEP EPD Seminar, February 28, 2024

大川(Okawa) 英希(Hideki) Institute of High Energy Physics, Chinese Academy of Sciences

Quantum Computing

- Quantum computing is a technology of (near?) future
- R&D actively ongoing in various fields
- High energy physics in not an exception!

HEP

©本源

Quantum for High Energy Physics

- Rapidly gaining momentum in various countries. Various roadmaps presented in 2020's. Dedicated research centers founded in many labs & univ.
- Including applications of quantum computing, algorithms & ML.

Quantum Computing @ IHEP

IOP Publishing f y in 🗅 እ

physicsworld

Magazine | Latest V | People V | Impact V | Collections V | Audio and video V TOPICS V

Editor's choice

Q

TOPOLOGICAL MATTER | RESEARCH UPDATE Surface 'signature' could distinguish exotic topological insulators Changes in the polarization of light reflecting off a material's surface could indicate whether it is a higher-order topological insulator, say theorists

Jobs Sign in Register

RADIOTHERAPY RESEARCH UPDATE Ultrahigh-dose rate X-ray platform lines up for FLASH radiobiological research Researchers at the University of Victoria have characterized an X-ray irradiation platform for FLASH radiobiological studies and performed initial preclinical investigations

MAGNETISM AND SPIN RESEARCH UPDATE Magnetic monopoles appear in haematite Diamond quantum magnetometry finds isolated magnetic north and south poles in a naturally

QUANTUM COMPUTING | FEATURE

IHEP seeks quantum opportunities to fast-track fundamental science

China's Institute of High Energy Physics (IHEP) in Beijing is pioneering innovative approaches in quantum computing and quantum machine learning to open up new research pathways within its particle physics programme, as Hideki Okawa, Weidong Li and Jun Cao explain

• IHEP is leading quantum computing applications for HEP w/ domestic collaborators in China!

 Physics World invited us to describe the progress at IHEP (<u>https://physicsworld.com/</u> we are now at the top page as the Editor's choice!)

Myself, Jiaheng Zou, Xiaozhong Huang

 $\langle \cdot \rangle$

 1981: Feynman proposed quantum computing concept

- "Now I explicitly go to the question of how we can simulate with a computer. . . the quantum mechanical effects . . . "
- "Can you do it with a new kind of computer — a quantum computer? Now it turns out, as far as I can tell, that you can simulate this with a quantum system, with quantum computer elements. It's not a Turing machine, but a machine of a different kind."

 1985: Deutsch described the first universal quantum computer

- Proposed current quantum qubit model
- Can pursue the same computation as the classical Turing machine → the universal quantum computers
- Attracted numerous computer scientists to the quantum computation field

 1994: Shor proposed algorithm to crack RSA encryption

- Encryption relies on factorization and requires exponential computation time to solve algorithm
- Shor's algorithm can solve in polynomial time

- 2013: D-Wave released quantum annealing machine
- Dawn of practical quantum computing era

Annealing (Analog) vs Gates (Digital)

Annealing

- Utilizes adiabatic quantum evolution to seek for the ground state of a Hamiltonian
 - Only applicable to optimization problems
- Implemented in D-Wave Systems.
- "Quantum-inspired" annealing emulator by Fujitsu, HITACHI, etc.
 - Useful for developing algorithms

Gates

- Utilizes quantum logic gates
- General purposed
- Most quantum computers in follow this approach
- 海外: IBM, Google, Xanadu, etc.
 (D-Wave is also joining)
- 中国:本源,国盾,量子院quafu, 百度etc.

量子霸权, 量子优势 Quantum Supremacy/Advantage

Article

Quantum supremacy using a programmable superconducting processor

	https://doi.org/10.1038/s41586-019-1666-5	Frank Arute ¹ , Kunal Arya ¹ , Ryan Babbush ¹ , Dave Bacon ¹ , Joseph C. Bardin ^{1,2} , Rami Barends ¹ ,		
	Received: 22 July 2019	Rupak Biswas ³ , Sergio Boixo ¹ , Fernando G. S. L. Brandao ^{1,4} , David A. Buell ¹ , Brian Burkett ¹ , Yu Chen ¹ , Zijun Chen ¹ , Ben Chiaro ⁵ , Roberto Collins ¹ , William Courtney ¹ , Andrew Dunsworth ¹		
	Accepted: 20 September 2019	Edward Farhi ¹ , Brooks Foxen ^{1,5} , Austin Fowler ¹ , Craig Gidney ¹ , Marissa Giustina ¹ , Rob Graff ¹ ,		
	Published online: 23 October 2019	Keith Guerin ¹ , Steve Habegger ¹ , Matthew P. Harrigan ¹ , Michael J. Hartmann ¹⁶ , Alan Ho ¹ , Markus Hoffmann ¹ , Trent Huang ¹ , Travis S. Humble ⁷ , Sergei V. Isakov ¹ , Evan Jeffrey ¹ , Zhang Jiang ¹ , Dvir Kafri ¹ , Kostyantyn Kechedzhi ¹ , Julian Kelly ¹ , Paul V. Klimov ¹ , Sergey Knysh ¹ , Alexander Korotkov ^{1,8} , Fedor Kostritsa ¹ , David Landhuis ¹ , Mike Lindmark ¹ , Erik Lucero ¹ , Dmitry Lyakh ⁹ Salvatore Mandrà ³¹⁰ Larrod P. McClean ¹ Matthew McEwop ⁵		
<i>Nature</i> vol. 574,	p. 505–510 (2019)	Anthony Megrant ¹ , Xiao Mi ¹ , Kristel Michielsen ^{11,12} , Masoud Mohseni ¹ , Josh Mutus ¹ , Ofer Naaman ¹ , Matthew Neeley ¹ , Charles Neill ¹ , Murphy Yuezhen Niu ¹ , Eric Ostby ¹ , Andre Petukhov ¹ , John C. Platt ¹ , Chris Quintana ¹ , Eleanor G. Rieffel ³ , Pedram Roushan ¹ , Nicholas C. Rubin ¹ , Daniel Sank ¹ , Kevin J. Satzinger ¹ , Vadim Smelyanskiy ¹ , Kevin J. Sung ^{1,13} , Matthew D. Trevithick ¹ , Amit Vainsencher ¹ , Benjamin Villalonga ^{1,14} , Theodore White ¹ , Z. Jamie Yao ¹ , Ping Yeh ¹ , Adam Zalcman ¹ , Hartmut Neven ¹ & John M. Martinis ^{1,5*}		

¹Google AI Quantum, Mountain View, CA, USA. ²Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA, USA. ³Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA, USA. ⁴Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA. ⁵Department of Physics, University of California, Santa Barbara, CA, USA. ⁶Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Erlangen, Germany. ⁷Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA. ⁸Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. ⁹Scientific Computing, Oak Ridge Leadership Computing, Oak Ridge National Laboratory, Oak Ridge, TN, USA. ¹⁰Stinger Ghaffarian Technologies Inc., Greenbelt, MD, USA. ¹¹Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany. ¹²RWTH Aachen University, Aachen, Germany. ¹³Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. ¹⁴Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA. *e-mail: imartinis@google.com

H. Okawa

量子霸权, 量子优势 Quantum Supremacy/Advantage

RESEARCH

QUANTUM COMPUTING

Quantum computational advantage using photons

Han-Sen Zhong^{1,2}*, Hui Wang^{1,2}*, Yu-Hao Deng^{1,2}*, Ming-Cheng Chen^{1,2}*, Li-Chao Peng^{1,2}, Yi-Han Luo^{1,2}, Jian Qin^{1,2}, Dian Wu^{1,2}, Xing Ding^{1,2}, Yi Hu^{1,2}, Peng Hu³, Xiao-Yan Yang³, Wei-Jun Zhang³, Hao Li³, Yuxuan Li⁴, Xiao Jiang^{1,2}, Lin Gan⁴, Guangwen Yang⁴, Lixing You³, Zhen Wang³, Li Li^{1,2}, Nai-Le Liu^{1,2}, Chao-Yang Lu^{1,2}†, Jian-Wei Pan^{1,2}†

Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, *Jiuzhang*, generates up to 76 output photon clicks, which yields an output state-space dimension of 10^{30} and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of ~ 10^{14} .

Science 370, 1460–1463 (Dec. 2020)

九章 量子计算机

¹Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. ²CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China. ³State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. ⁴Department of Computer Science and Technology and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China. *These authors contributed equally to this work. **†Corresponding author. Email: cylu@ustc.edu.cn (C.-Y.L.); pan@** ustc.edu.cn (J.-W.P.)

IHEP EPD Seminar

Development Roadmap | Executed by IBM Contarget Contarget

IBM Quantum

	2019 🤡	2020 🖌	2021 🖌	2022	2023	2024	2025	Beyond 2026
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers					Prototype quantum softwa	re applications	Quantum software applicat	ions
							Machine learning Natural	science Optimization
Algorithm		Quantum algorithm and application modules		\bigcirc	Quantum Serverless			
Developers		Machine learning Natura	science Optimization			Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel	Circuits	$\overline{\mathbf{O}}$	Qiskit Runtime 🕢					
Developers				Dynamic circuits 👌	Threaded primitives	Error suppression and mitig	gation	Error correction
System Modularity	Falcon 🔗 27 qubits	Hummingbird 🔗 65 qubits	Eagle 🔗 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum
								communication
 Large fraction of studies in HEP use IBM qiskit & hardware. 				Heron 133 qubits x p	Crossbill 408 qubits			
 Important milestone for HEP is the noise-mitigated 100x100 circuits scheduled to be released in 2024. → HEP will actively be involved in the 100x100 challenge 				100x100 vill actively				

Chinese Quantum Cloud Examples

本源 (Origin Quantum)

- Using superconductors.
- 72 qubit machine available now.
- Various libraries available for QML.

北京量子院 Quafu

- Using superconductors.
- Fully free: 10, 18, 21, 136 qubits

From quafu website

Chinese Quantum Cloud Examples

国盾量子 (Quantum Tek)

- Optical quantum computers.
- 66 qubits, 110 couplers

祖冲之2号同款量子处理器	
芯片A: (已上线)	
读取比特: 54/66	
耦合比特: 82+/110	
单比特门错误率: 0.2172%	
双比特门错误率: 2.1268%	
读取错误率: 5.6956%	

From 梁福田's slides

From 刘树森's slides

Why Quantum Computing?

- **Probability of each state** is exponentially small Answer 入力 В С **Quantum State** D Е Interference **Superposition** of all patters \rightarrow can process 2^N states in parallel Utilize interference to increase the probability of answer wanted
- Through superposition, entanglement, interference (& tunneling), quantum computers could bring in exponential speed-up

Modified from

©QunaSys

Quantum Computer + Machine Learning

- Quantum computer + machine learning → Quantum machine learning (QML)
 "the best of both worlds"?
- Why do we bother? → Rich Hilbert space, superposition, entanglement (& tunneling) could lead to improvement in learning data
- 4 types of QML exist
- However, quantum advantage is not yet fully established in practical implementations (starting to see some signs though).

data processing device

Today's Menu: Tracking w/ CQ, CC

CQ approach (classical data + quantum computer)

 H. Okawa, "Charged particle reconstruction for future high energy colliders with Quantum Approximate Optimization Algorithm," Springer Communications in Computer and Information Science, 2036 (2024) 272–283, arXiv:2310.10255

CC approach (fully classical but quantum-inspired algorithm)

 H. Okawa, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, "Quantum Annealing Inspired Algorithms for Track Reconstruction at High Energy Colliders," arXiv:2402.14718 (2024).

Why Quantum Computing for HEP?

- At the HL-LHC, we will enter the "Exa-byte" era. Annual computing cost will increase by a factor of 10-20
- <u>Without various innovations, the</u>
 <u>experiment will not be able to operate</u>.
 GPUs and other state-of-the-art technologies
 will be the baseline at the HL-LHC.
- Quantum computing may bring another "leap".
- Tracking is the highest CPU consuming reconstruction task.
- Tackling these challenges will also be useful for future colliders: e.g. CEPC & SppC

Track Reconstruction at LHC & HL-LHC

	Run 1	Run 2	HL-LHC
μ	21	40	150-200
Tracks	~280	~600	~7-10k

- At the HL-LHC, additional interactions per bunch crossing becomes exceedingly high & <u>CPU time</u> <u>increases exponentially with more pileup</u>.
- GPU & ML-based approaches are actively investigated, but quantum ML may play an important role.

https://cds.cern.ch/record/1966040

Classical ML Approaches

- There are also studies using CNN & Point Net at BES-III
- Silicon hits can be regarded as "nodes" & connected segments as "edges"
- Computing time scales linearly with number of tracks

Quantum Approach: QUBO

• Tracks are formed by connecting silicon detector hits: e.g. triplets (segments w/ 3 hits).

- Triplets are connected to reconstruct tracks & it can be regarded as a <u>quadratic</u> <u>unconstrained binary optimization (QUBO)</u> problem.
- Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.

 H. Okawa
 IHEP EPD Seminar
 22

Quantum Annealing Approach

- Quantum annealer looks for the global minimum of a given function with quantum tunneling: a natural machine to search for the ground state of a Hamiltonian.
- D-Wave currently provides 5000+ qubit service (1200+ qubits, 10000+ couplers available in Jan. 2024).
- Pros: High number of qubits available (concept fundamentally different from quantum gates).
- Cons: Can only run QUBO problems. Also, not suitable for very small minimum energy gaps, as the computing time explodes to remain adiabatic.

IHEP EPD Seminar

Previous Studies w/ Q. Annealing

- Previous studies w/ D-Wave machine show that efficiency is almost stable w/ # of particles, but purity (precision) degrades. → later resolved w/ QUBO optimization.
- Simulator provides consistent results w/ hardware.
- Quantum annealers are generally powerful, but not suitable for very small minimum energy gaps, as the computing time explodes to remain adiabatic.
 → Gate computers, in particular, QAOA has an advantage for such cases.

Running on Quantum Gates

- QUBO can be mapped to Ising Hamiltonian and be QUBO can be mapped to using manimum and be solved using Variational Quantum Eigensolver (VQE) $\mathcal{H} = -\sum_{n=1}^{N} \sum_{m=1}^{N} \bar{b}_{nm} \sigma_n^x \sigma_m^x - \sum_{m=1}^{N} \bar{a}_n \sigma_n^x$ or Quantum Approximate Optimization Algorithm (QAOA) w/ quantum gates.
 - n=1 m < n
- Previous LUXE studies considered VQE w/ TwoLocal ansatz w/ R_Y gates & circular CNOT entangling ٠ pattern w/ IBM (A. Crippa et al., arXiv:2304.01690, L.Funcke et al., arXiv:2202.06874)
- QAOA did not perform well & optimization was left for future studies. \rightarrow A scope of this talk •

Dataset (TrackML)

- TrackML is an open-source dataset prepared for TrackML Challenges (a competition hosted by CERN & Kaggle).
- It is designed w/ HL-LHC conditions (200 pileup) & run w/ fast simulation (e.g. noise, inefficiency, parametrized material effects, etc.)
- Continues to be useful for individual studies including quantum tracking.

CQ Approach (经典数据+量子计算)

H. Okawa, Springer Communications in Computer and Information Science, 2036 (2024) 272–283, <u>arXiv:2310.10255</u>

QAOA in Origin Quantum (本源)

- VQE & QAOA libraries implemented in pyqpanda-algorithm by OriginQ (本源).
- Adopts Quantum Alternative Operator
 Ansatz for QAOA.
 An example of circuits from the actual run

- Can utilize CVaR loss function (P. Barkoutsos et al., Quantum, 2020, 4: 256) or Gibbs optimization
- 6 qubit machine (Wuyuan 悟源) is used for the real hardware computation in this talk.

QAOA Optimization

- QAOA does not perform well w/ shallow layers, but provides good performance with more layers. <u>Compatible performance b/w hardware & simulator.</u>
- L-BFGS-B optimizer is better than SLSQP. TNC has degraded performance & not shown here.
- No significant difference w/ CVaR or Gibbs loss function.
- Probability saturates around 7 layers for L-BFGS-B cases.

QAOA Accuracy

- Note that the probability is NOT the accuracy of QAOA.
- A single job runs multiple measurements, ranks the answers by probability & select the highest probability state as answer.
- The accuracy already reaches 100% within the statistical uncertainty at 5 layers.
- For further studies, a conservative choice of 7 layers is used.

Sub-QUBOs

- Number of qubits required is determined by the number of triplet candidates → Obviously cannot cover the full QUBO [O(10²x10²~ 10⁴x10⁴)] for tracking in the NISQ era
- QUBO is split into sub-QUBOs of size 6x6 to match with OriginQ hardware.

- There are various sub-QUBO algorithms proposed: qbsolv (now in dwave-hybrid library), for example.
- I adopted a sub-QUBO method using multiple solution instances from Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606.

Preliminary sub-QUBO Results

- Ran measurements to compare the performance and stability. 7 layers used in QAOA.
- No significant dependence on sub-QUBO model parameters (N_I, N_E, N_S) & <u>compatible</u> <u>performance between OriginQ simulator & actual hardware!</u>
- Visible improvement w/ sub-QUBO compared to the simulated annealing only!

WIP: Triplet Efficiency & Purity

Efficiency =
$$\frac{TP}{TP + FN} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of true doublets}}$$
,
Purity = $\frac{TP}{TP + FP} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of all reconstructed doublets}}$,

- QAOA+sub-QUBO provides compatible performance as previous quantum annealing studies.
- No sign of degradation in the real hardware

WIP: Triplet Efficiency & Purity

- 1st successful implementation of QAOA for tracking in the world!
- 1st application of theoretically robust sub-QUBO method in HEP!
- •1st usage of Chinese quantum computer for tracking! 自力更生!

H. Okawa, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, arXiv:2402.14718 (2024)

Simulated Bifurcation 量子启发算法

Quantum inspired algorithm

- Quantum annealing reaches the minimum energy through adiabatic theorem
- "Quantum-inspired" algorithms search for minimum energy through the classical time evolution of differential equations.
- SB in particular can run in parallel unlike simulated annealing, in which one needs to access the full set of spins & not suitable for parallel processing
 H. Okawa

Simulated Bifurcation (SB)

adiabatic Simulated Bifurcation (aSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = - [Kx_i^2 - p(t) + \Delta]x_i + \xi_0 \sum_{j=1}^N J_{ij}x_j$$

ballistic Simulated Bifurcation (bSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = (p(t) - \Delta) x_i + \xi_0 \sum_{j=1}^N J_{ij} x_j$$

> discrete Simulated Bifurcation (dSB)

$$\dot{x}_i = \frac{\partial H_{\text{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = \frac{\partial H_{\text{SB}}}{\partial x_i} = (p(t) - \Delta)x_i + \xi_0 \sum_{j=1}^N J_{ij} \text{sign}(x_j)$$

M.H. Yung

Simulated Bifurcation

Goto et al., Sci. Adv. 2019; 5 : eaav2372

- Simulated bifurcation is known to outperform other CC algorithms as well as quantum annealing for some problems
- Simulated Coherent Ising Machine (CIM) had largely degraded performance in our study, so is not presented.

N	Connectivity	$J_{i,j}$	Machine	TTS	
60	All-to-all	{±1}	dSBM RBM CIM QA	9.2 μs 10 μs 0.6 ms 1.4 s	
100	All-to-all	{±1}	dSBM RBM SimCIM CIM	29 μs 30 μs 0.6 ms 3.0 ms	
200	Sparse (Degree 3)	{0, -1}	dSBM QA CIM	0.70 ms 11 ms 51 ms	
700	All-to-all	{±1}	dSBM SimCIM DA	25 ms 0.14 s 0.27 s	
1024	All-to-all	{±1}	dSBM DA	55 ms 1 s	
1024	All-to-all _{{-2}	16 bits 2 ¹⁵ + 1,, 2 ¹⁵	dSBM - 1} DA	0.29 s 0.9 s	
2000 (K ₂₀₀₀) All-to-all	{±1}	dSBM	1.3 s	
2000 (G22)	Sparse (1%)	{0, -1}	dSBM SimCIM	2.7 s 12 s	
					10 ⁻⁶ 10 ⁻³ 1
					TTS (s)

H. Okawa

Mimimum Ising Energy Prediction

- Originally proposed adiabatic simulated bifurcation (aSB) is largely outperformed by new versions, so not shown here.
- Ballistic simulated bifurcation (bSB) provides the best prediction of minimum energy with the least fluctuation.
- Discrete simulated bifurcation (dSB) is not as good as the other two, but the impact on the reconstruction performance is not significant (next slide)

Track Efficiency & Purity w/ QAIA

- Simulated bifurcation provides compatible or slightly better performance than D-Wave Neal.
- Track efficiency stays over 95% for all dataset up to the highest HL-LHC conditions
- Purity degrades with track multiplicity but >90% for <6000 particles, >84% even for <10000 particles.

Computation Speed

- Ballistic simulated bifurcation provides <u>4 orders of magnitude speed-up (1367s → 0.14s)</u> at most, compared to D-Wave Neal. → More speed-up expected with larger data size.
- Unlike D-Wave Neal, simulated bifurcation can effectively run <u>w/ multiple processing</u>
 <u>& GPU</u> → Perfect match with HEP computing environment!!

Simulated Bifurcation for Tracking

- World's 1st implementation of simulated bifurcation in HEP!
- This quantum-inspired algorithm runs on classical computers & provides a practical solution which can be considered <u>NOW</u>.

IHEP EPD Seminar

Summary

- Tracking is the highest CPU-consuming reconstruction task in the HL-LHC era.
- Improvement of existing methods & classical ML methods are bringing in improvement, but another leap from quantum machine learning would be highly exciting.
- Presented recent results on the quantum tracking using two complementary approaches: CQ approach (QAOA+subQUBO) & CC approach (quantumannealing inspired algorithms).
- CQ approach: Promising tracking performance from the real quantum hardware.
- CC approach: Quantum-annealing inspired algorithms provide four orders of magnitude speed-up at most (& more speed-up expected w/ larger dataset) & can already be considered for implementation.
- Further studies are ongoing. Stay tuned!

Backup

Quantum Clouds

From 王正安's slides (&中国信通院's material)

 some numbers outdated (rapid development!!)

国内量子云平台起步较晚,样机比特数较少、用户数量较少且不稳定、免费使用(国外已形成收费模式),尚未形成良好的生态模式。 未来发展关注点:1.提升硬件性能;2.深化应用探索;3.探索合作与商用模式。

Multiple Solution Instances

- 3 parameters (N_I, N_E, N_S) in this sub-QUBO method.
- Extract N_I quasi-optimal solutions from full-QUBO classically.
- Randomly select N_s solution instances from N_l .
- Focus on particular binary variable x_i. Rank them in accordance to how much they vary over N_S solution instances. Highly varying x_i will be included in the sub-QUBO model.
- Pick-up process of N_S solution from quantum computing is repeated N_E times & N_E sub-QUBO models are considered.
- Returns a pool of N_I solutions & the best solution will be chosen.

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606