

Study of SiW-ECAL and SDHCAL for CEPC

Haijun Yang (SJTU)

On Behalf of CEPC Calorimeter Working Group

February 23, 2024

Introduction

- CEPC: future circular lepton collider
 - Higgs/W/Z bosons, top, BSM searches, etc.
 - PFA calorimeter: promising to achieve 3-4% jet resolution
- PFA Calorimeter

Calorimeters Designs for CEPC

Si-W ECAL

- Baseline design
- Sampling structure
- High granularity (1x1 cm²)
- Strong shower separation

Semi-DHCAL (SDHCAL)

- High granularity (1x1 cm²)
- Three thresholds readout
- Self-supporting mechanical structure as steel absorber

JINST 10 (2015) P10039, JINST 11 (2016) P06014 JINST 15 (2020) P10009, JINST 17 (2022) P07017

Performance of SiW-CAL

- Photon energy resolution vs sampling layers
- Silicon sensor thickness: 500 microns
- ➢ Dijet mass resolution: 3.75% for vvH→vvgg

SiW ECAL (Bard) 1 Rin = 1843 mm [Rout = 2028 mm SiW ECAL (Endcap) Zin = 2450 mm Zout = 2635 mm Gap (100mm): 2350 ~ 2450 mm

Figure 5.6: Schematic of the CEPC ECAL layout in its baseline design. The ECAL is organized into one cylindrical barrel and two disk-like endcap sections, with 30 layers in each section. The barrel section is arranged into 8 staves, each consisting of 5 trapezoidal modules. Each of the two endcap sections is made of four quadrants, each consisting of 2 modules. The ECAL barrel overall radius is 2028 mm in X-Y plane, the two endcaps are located at ± 2635 mm.

Performance of SDHCAL

> DHCAL (1m³), TB at FNAL/CERN

SDHCAL (1m³), 3 thresholds, TB at CERN

Performance of SDHCAL

JINST 17 (2022) P07017

Performance Comparison: BMR

- Higgs boson mass resolution(BMR) improvement:
 - $H \rightarrow gg: 4.5\% \rightarrow 3.6\%$
 - $H \rightarrow \gamma \gamma$: 2.1% \rightarrow 1.2%
- Better BMR with crystal ECAL

BMR $(H \rightarrow \gamma \gamma)$

ECAL Performance Comparison : π^0/γ **Reconstruction**

- $B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$ measurement
 - Necessary channel to determine CKM angle α
 - ECAL performance can be characterized by σ_{m_B}
- Crystal ECAL: more potentials for π^0/γ reconstruction (flavor physics)

Mass	Resolution	of	0i0
111000	1.000101011	U .	

	ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$	
SiW	$17\%/\sqrt{E}\oplus 1\%$	170	~ 1.2%	$\sim 21\%$	3~
Crystal	$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$	↓ ^{im}

B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector Technology Workshop, Fudan, 2023), Yuexin Wang

Down-select criteria for calorimetry system: performance

Category	Items	SiW ECAL + SDHCAL	
	Boson Mass Resolution (BMR) < 4%	BMR ~ 3.75% (vvH→vvgg) BMR ~ 2.1% (H → γγ)	
	PID in jets: lepton ID and precision	Lepton ID: TBD;	
Performance	Timing Resolution	~ ns (SKIROC2A, 5mW/ch) ~ ns (HARDROC2, 1.4mW/ch) 20-30ps (HGCROC, CMS) 40-50ps (PETIROC with MRPC)	
	EM energy resolution	~17%/ √ E ⊕ 1% (SiW ECAL)	
	Hadron energy resolution	~ 68% / √ E ⊕ 1% (SDHCAL)	
	$\pi^0 \rightarrow \gamma\gamma$ reconstruction Simulat	Simulation studies	
	Granularity	1 x 1 cm ² ; 1 x 1 cm ²	
	Pile-up at Z-pole	TBD	

No. of Channels of SiW ECAL and SDHCAL

- ECAL Barrel, $R_{in} = 1.9m$, $R_{out} = 2.1m$, Length = 6.1m, $N_{layer}=30$ Active Area of ECAL barrel = $2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 2300 m^2$
- ECAL Endcap (2), $R_{in} = 0.35m$, $R_{out} = 2.1m$, $N_{layer}=30$ Area of HCAL endcap = 2*PI*($R_{out}*R_{out} - R_{in}*R_{in}$)* $N_{layer} = 808 \text{ m}^2$
- HCAL Barrel, R_{in} = 2.15m, R_{out} = 3.45m, Length =6.3m, N_{layer}=40 Area of HCAL barrel = 2*PI*[(R_{in}+R_{out})/2]*L*N_{layer} = 4433 m²
 HCAL Endcap (2), R_{in} = 0.35m, R_{out} = 3.45m, N_{layer}=40

Area of HCAL endcap = $2*PI*(R_{out}*R_{out} - R_{in}*R_{in})*N_{layer} = 2961 \text{ m}^2$

ECAL Active Area: 3108 m2 \rightarrow 31.1 M (1x1 cm² cell) HCAL Active Area: 7394 m2 \rightarrow 73.9 M (1x1 cm² cell)

Cost Estimation

Reference of ILD cost estimation (TDR, V4, P306)

Item		Unit cost	Cost (\$)
Tungsten	168 tons	\$123/kg	20.7M
Carbon fiber			2.1M
Silicon sensor	3110 m ²	\$3/cm ²	93.3M
Readout ASIC			16.5M
Readout Board			21.0M
Materials, Cables, connectors			3.5M
Tooling			9.3M
Assembly			13.5M
Integration			0.5M
Sum			180.4M

	Material	Cost [ILCU]	System		Comment	
	Tungsten	123/kg	SiECAL, ScECA	L,	quote from n	nanufac-
	Stainless Steel	5/kg	AHCAL, SDHCA	AL.	processing co added (1-4 E	osts to be UR/ kg)
	Si sensors	$3/cm^2$	SiECAL		based on ext of current qu EUR/ cm ²	rapolation otation of 5
	SiPM	1/pc	ScECAL, AHCA	L, muon	based on ma extrapolation price 7-10 EL	nufacturer 1, current JR/piece
	ASIC	0.22- 0.25/ch	SiECAL, ScECA AHCAL	L,	current price EUR/ch	0.5
	ASIC	0.1/ch	SDHCAL		current price EUR/ch	of 0.18
	PCB	$7900/m^2$	SiECAL		prototype	
	PCB	$2600/m^2$	ScECAL		extrapolated	from proto-
	PCB	$1800/m^2$	SDHCAL, AHCA	AL.	type price of for AHCAL e from prototy 10800/m ²	10800/m ² extrapolated pe price of
-	SiECAL					ScECAL
			Cost			Cost
	ltem		[kILCU]	Item		[kILCU]
	Tungster	ı	16310	Tungster	n + carbon	18500
	Carbon f	iber struc-	2130	parts		
	ture			Module	realisation	1700
	Silicon se	ensors	75000	Scintillat	ors	1030
	Readout	ASIC	16500	Photo D	etectors	10200
	Readout	Board	21000	Readout	ASIC	2500
	Materials	5	1300	Readout	Board	25000
	Cables, c	onnectors	2220	Readout	System	6200
	Tooling		9300	Cables, o	connectors	1000
	Assembly	/	13500	Power su	upplies	4100
	Integratio	on	500	Tooling		3800
-	Sum SiEC	AI	157760	Su	m ScECAL	74000

Cost of SDHCAL (Active layers)

Parts	Unit Price (RMB)	Quantity	Total (RMB)
Glass	$150 / m^2$	2	300
Resistive Paint	1 / g	100	100
Frame	10 / m	4	40
Spacers	1	81	81
Spacer Glue	3.3 / g	30	100
Gas Connector	20	2	40
HV contacts	80 / m	0.1	8
HV connectors	50	2	100
Total cost of $1m^2$ GRPC			769

Parts	Unit Price (Euro)	Quantity	Total(Euro)
Cassette plates	8 /kg	50	400
Plate machining	200	1	200
Cassette walls	8 / kg	0.8	6.4
Mylar foils	$15 / m^2$	2	30
Silicone glue	0.3 / ml	60	18
Bolts M2	0.02	60	1.2
Total cost of $1m^2$ cassette			655.6
Readout Electronics	Unit Price (Euro)	Quantity	Total (Euro)
ASIC (64 channels)	11.5	144 (9216)	1656
ASU:PCB (8-layer)	300	6	1800
DIF (detector interface DAQ card)	285	3	855
ASU-ASU connector	11	6	66
DIF-ASU	40	3	120
Total cost for readout electronics			4497

Unit Cost: ~ 42K RMB/m² (for 1x1 cm²) ~ 30K RMB/m² (for 3x3 cm²)

SDHCAL: 7394 m² → 310M RMB → 222M RMB

Absorber (148 m³) → 74M RMB

Total Cost (RMB): 384M vs 296M

Backup

No. of Channels of HCAL

Cell Size \ channels	HCAL Barrel	HCAL Endcap	Channels (N _{ch})	Power AHCAL	Power SDHCAL
1cm x 1cm	43.3M	33.48M	76.78M		
2cm x 2cm	1.157M	8.37M	19.19M		
3cm x 3cm	4.2M	3.08M	7.3M		
4cm x 4cm	2.36M	1.73M	4.1M		

Power Consumption (rough estimation): AHCAL: 7mW/ch * N_{ch3} + 9W/DIF/m² * 7678 (69.1kW) SDHCAL: 1.4mW/ch * N_{ch1} + 5.4W/DIF/m² * 7678 (41.5kW)

Electronics Channels and Power

(0. 12 λ _I , 1. 14 X ₀)	
Stainless steel Absorber(15mm)	
Stainless steel wall(2.5mm)	
$GRPC(6mm \approx 0 \lambda_L X_0)$	
Stainless steel wall(2.5mm)	

→SDHCAL has 48 layers which aims for ILC Detector each layer: 6mm gRPC + 20mm absorber
→48-layer ~ 5.76 λ_I

→ 1m² RPC needs 6 PCBs, each PCB has 1536 ch (24 ASIC chips)
→ Each ASIC chip (Hardroc) has 64 channels, size 4.3mm*4.7mm
→ ASIC Power: 1.4mW/ch * 64 ch = 90 mW/Chip
→ Power: 1.4mW/ch * 9216 ch (6*24*64) = 13 W/m²

Readout Electronics for RPC

ASICs : HARDROC2 64 channels Trigger less mode Memory depth : 127 events 3 thresholds Range: 10 fC-15 pC 110fC, 5pC, 15pC Gain correction → uniformity

Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisy-chained. $1 \times 1m^2$ has 6 PCBs and 9216 pads.

DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

