

Crystal/glass calorimeter option (electromagnetic sector)

Yong Liu (IHEP) Meeting on CEPC Calorimeter Option Down-Select Feb. 23, 2024

ECAL: crystal/glass option

• Down-select criteria for calorimetry system: performance

Category	ltems	Long crystal bars	Short crystal bars*	
Performance	Boson Mass Resolution (BMR < 4%)	TBD (ongoing studies)	3.6-3.7% (1cm ³ cubes) for Higgs hadronic decays (jets)	
	EM energy resolution	Geant4 full simulation + digitisation: $1.5 - 2\%/\sqrt{E(GeV)}$		
	PID in jets: lepton ID and precision timing	Lepton ID: TBD; Timing resolution (DESY TB): ~1.3ns (MIP); 0.34ns (shower maximum)	Lepton ID: TBD; Timing resolution: 14 ps (MIP), 5-7 ps (shower maximum)**	
	π^0 reconstruction	TBD	Simulation: crystal (1cm ³ cubes) versus silicon (see page 3)	
	Pile-up at Z-pole	TBD	TBD	

* Glass is a promising option in the form factor of cubes/short bars, in terms of technical feasibility and cost effectiveness
** Based on a reference on 2016 CERN beamtest results (Crystal Clear Collaboration)

ECAL: crystal/glass option

• Down-select criteria for calorimetry system: cost

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius	1800 mm	400 mm	/
Length for barrel; Outer radius for endcap	5000 mm	1800 mm	/
Depth	24 X0 (26.83 cm BGO)		/
Modularity*	28 modules in phi, 13 rings along Z	TBD (ideal cylinder for now)	/
Crystal Volume	16.2 m ³	5.2 m ³	21.4 m ³
Readout channels*	0.80 M	0.26 M	1.06 M
Power dissipation* (FEE only)			10.6 kW
Crystal cost			64.2 M EUR
SiPMs + ASICs*			10.6 M EUR

* **Note:** estimates in this table only for the design of *long bars*

(Preliminary) Key components and materials SiPM (3x3mm²): 9 EUR / pc Front-end ASIC: 1 EUR / ch Crystal/glass: ~3 EUR / cm³ (with a large uncertainty) Power: ~10 mW / ch (FEE only)

• Down-select criteria for calorimetry system: TRL

Category	Status	Long crystal bars	Short crystal bars
Technical Readiness Level	Full Simulation (system level)	CEPCSW: barrel geometry; reconstruction (ongoing developments)	CEPCsoft: full geometry, Arbor
	Full Simulation (module level)	Geant4 simulation, digitisation (module 40x40x28 cm ³)	Geant4 simulation, digitisation (flexible module dimensions)
	Prototyping R&D (common)	High pixel density SiPMs (6/10 um pixel pitch), front-end electronics (ASICs), timing resolution	
	Prototyping R&D (modules, units)	Crystal module (12x12x24 cm ³); long crystal bars (40/60 cm)	No module developments; Short bars (2/4cm)

Extra Slides

Yong Liu (liuyong@ihep.ac.cn)

Designs and EM resolution

Geant4 full simulation + digitisation

Light Yield vs Stochastic Term

Key Parameters	Value	
MIP light yield	~200 p.e./MIP	
Dynamic range	$1 - 10^5$ p.e.	
Energy threshold	~0.1 MIP	
Timing resolution	1ns (→100 ps?)	
Response non-uniformity	<1%	
Temperature stability	Stable at ${\sim}0.05~^{\circ}{\rm C}$	
Gap tolerance	~100 μm	

40cm

Higgs physics performance

Baohua Qi, Dan Yu (IHEP); Zhiyu Zhao (SJTU)

Zhiyu Zhao (SJTU), Yuexin Wang (IHEP)

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

Mass Resolution of pi0

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	$\sim 1.2\%$	~ 21%
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$

JHEP12(2022)135

Crystal ECAL: prototyping and beamtests

Expected performance at CERN PS-T9

- Timing resolution (MIP level): ~1.8 ns (two ends) \rightarrow ~1.3ns (single end)
- Timing resolution (upstream crystals as pre-shower): ~0.34 ns (single end for large signals)