

Performance and readiness of TPC for CEPC

Huirong Qi CEPC Track meeting, 2024.02.23 • Performance of TPC for CEPC TDR

• TPC as the main tracker detector to satisfy the physics requirements :

- For Higgs run, W and top running, no problem for all TPC readout technologies.
 - Central Tracking is entrusted to a pad readout TPC detector.
- For high luminosity (2×10^{36}) Z pole run:
 - Pixelated readout TPC is a good option at high luminosity on the circular e+e- collider.
 - The gating will not be possible, so we need an ion back flow suppression without gating R&D (double or triple mesh/mutil-Mesh, graphene membrane...)
 - Some intense R&D program has to be addressed.

TPC key parameters for Higgs run

Parameters	CEPC CDR	Achievement by Prototype		
B-field	3.0T without any E $ imes$ B effect	1.0T at 5GeV/e-beam		
Geometrical parameters	r _{in} r _{out} z	r z		
	0.6m 1.8m 2.99m	0.8m 0.5m		
Solid angle coverage	Up to $\cos\theta \simeq 0.85$	/ (ОК)		
TDC material budget	\simeq 0.05 X ₀ including outer fieldcage in r	$\simeq 0.012 X_0$ including outer fieldcage in r		
TPC material budget	< 0.25 X ₀ for readout endcaps in z	< 0.17 X_0 for readout endcaps in z		
Number of pads	$\simeq 8 \times 10^5$ of all endcaps	7 $ imes$ 4976 of the seven modules		
Pad pitch/ NO. of Padrows	\simeq 1 \times 6 mm ² / 200 points per track in r ϕ	$\simeq 1 \times 6 \text{ mm}^2$		
σ _{point} in rφ	\simeq 60 µm for zero drift, \leq 120 µm overall	≤ 100 µm overall		
σ _{point} in rz	\simeq 0.4 – 1.4 mm (for zero – full drift)	\simeq 0.4 – 0.8 mm (for zero – full drift)		
2-hit separation in rq	≃ 2 mm	< 2 mm		
dE/dx resolution	≤ 4 % (Pad readout)	≤ 3.6 % (Pad readout)		
Momentum resolution	$\delta(1/p_t) \simeq 0.7 \times 10^{-4}/\text{GeV/c}$ (TPC only)	/ (ОК)		
lons suppression	IBF×Gain≤1	IBF×Gain≤1@Gain=2000 4		

TPC key parameters for Z pole run

Parameters	CEPC CDR	Achievement by Prototype		
B-field	2.0T without any E $ imes$ B effect	1.0T at 5GeV/e-beam		
Geometrical parameters	r _{in} r _{out} z	r z		
Geometrical parameters	0.6m 1.8m 2.99m	0.8m 0.5m		
Solid angle coverage	Up to $\cos\theta \simeq 0.85$	/ (ОК)		
TDC meterial hudget	\simeq 0.05 X ₀ including outer fieldcage in r	\simeq 0.012 X ₀ including outer fieldcage in r		
TPC material budget	< 0.25 X ₀ for readout endcaps in z	/		
Number of pads	$\simeq 10^9$ of all endcaps	2.4cm $ imes$ 9.6cm of the 3 modules		
Pad pitch/ NO. of Padrows	/	≃ 55μm × 55μm <mark>/ (Still R&D)</mark>		
σ _{point} in rφ	\simeq 60 µm for zero drift, \leq 120 µm overall	≤ 80 μm		
σ _{point} in rz	\simeq 0.4 – 1.4 mm (for zero – full drift)	/		
2-hit separation in rq	≃ 2 mm	< 0.5mm		
dE/dx resolution	≤ 4 % (Pad readout)	≤ 3 % (Pixelated readout) / (Still R&D)		
Momentum resolution	$\delta(1/p_t) \simeq 0.7 \times 10^{-4}/\text{GeV/c}$ (TPC only)	/		
lons suppression	Primary ions level	/ (Still R&D)		

Optimization of Pad readout size

- Simulation of TPC readout pad size
 - Framework of the simulation are ready
 - Simulation on going

Cost – TPC

• **TPC cost estimation**

N

• Chamber

- Endplate
- Electronics
- Alignment
- HV
- Gas system

			Detector concept/ Detector items	Unit	Unit cost (RMB)	Quantity	total cost (RMB)
ımber			CEPC				
3.2			Time Projection 18000.00				
	3.2.1		Chamber 3600.00				
		3.2.1.1	Fieldcage		1200.00	1	1200.00
		3.2.1.2	Connector		800.00	1	800.00
		3.2.1.3	Barrel		600.00	1	600.00
		3.2.1.4	HV test bef. Assembly		400.00	1	400.00
		3.2.1.5	Support board		600.00	1	600.00
	3.2.2		Endplate 2500.00				
		3.2.2.1	MPGD detector		800.00	1	800.00
		3.2.2.2	Support board		600.00	2	1200.00
		3. <u>2.</u> 2.3	Readout bef. Assembly		2.50	200	<u>500.00</u>
1	3.2.3		Electronics 10000.00				
1.1		3.2.3.1	FEE ASIC readout		0.012	200000	2400.00
- <u>-</u>		3.2.3.2	Cables		0.03	50000	1500.00
		3.2.3.3	Optical driver		0.03	50000	1500.00
3.2.3.4		Optical link, connectors		1.00	500	500.00	
- i -		3.2.3.5	DAQ system		0.30	5000	1500.00
		3.2.3.6	Crate and controller		20.00	50	1000.00
3.2.3.7		3.2.3.7	Cooling system		1600.00	1	1600.00
	3.2.4 3.2.4.1 3.2.5		Alignment and calibration	1			500.00
			Calibration system		500.00	1	500.00
			HV and Gas system				1400.00
		3.2.5.1	HV and low power		600.000	1	600.00
		3.2.5.2	Gas system		300.00	1	300.00
		3.2.5.3	Slow control system		300.00	1	300.00
		3.2.5.4	Shipping bef. Assembly		200.00	1	200.00

TPC COST ESTIMATION (Unit: *10K RMB)

Ions distortion at Z pole run – physics events

Z pole run: hadronic Z event rate: 50 [kHz] (toy MC using pythia8)

bin size: $(\Delta z, \Delta r) = (1[cm], 0.5[cm])$

Glitches correspond to hot spots in ρ_{ion} , which seem to be averaged out in $\Delta r \phi$

Maximum distortion ~160 [µm] at the innermost region for hadronic Z rate of 50 [kHz]

Huirong Qi

Ions distortion at Z pole run – background

- For Higgs run, no problem detector factor for TPC
- For Z pole run
 - TPC with IBF*Gain=1 at CEPC-91
 - \rightarrow at best, less or similar space-charge as at ALICE

Collider Detector Model	CEPC_v4	CEPC_v4
Beamstrahlung pairs	CEPC Z-pole(91GeV)	CEPC Higgs(240GeV)
BX freq.	1/23 ns	1/680 ns
primary ions/BX	27.37 k	72.36 k
primary ions at any time	5.95×10^{11}	5.32×10^{10}
average primary ρ_{ion} [nC/m ³]	2.43	0.22
max (single BX) [nC/m ³ /BX]	1.05×10^{-6}	5.4×10^{-6}
max (steady state) [nC/m ³]	11.4	1.98

• Readiness of TPC for CEPC TDR

Pad readout TPC – Low power consumption and hybrid readout @IHEP

- Low power consumption ASIC has been developed for TPC readout.
 - Low power consumption FEE ASIC (~2.4 mW/ch including ADC)
- Hybrid readout module has been developed:
 - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
 - Spatial resolution of $\sigma_{r_{\varphi}} \leq 100 \ \mu m$ by TPC prototype
 - Pseudo-tracks with 220 layers (same as the actual size of CEPC baseline detector concept) and dE/dx is about 3.4 \pm 0.3%

500

450

400

350

300

250

200

150

100

50

50

100

150

200

Without the magnetic field B=0T

UV laser mimicking the tracks

Neff ~40 (Calibrated using ⁵⁵Fe)

300

z [mm]

250

https://doi.org/10.1016/j.nima.2022.167241 Huirong Oi # hits in track

Pad readout TPC technology – GEMs readout @LCTPC

- TPC prototype have been studied the beam under 1.0T.
 - GEMs with 100µm LCP insulator
 - Standard GEM from CERN
- Design idea of the GEM Module:
 - **No frame** at modules both sides
 - Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$, more stability by the broader arcs at top and bottom

Pad readout TPC technology – Resistive Micromegas readout @LCTPC

- Resistive Micromegas has been studied by the beam under 1.0T.
 - Bulk-Micromegas with 128 µm gap size between mesh and resistive layer.
- HV scheme of the module (ERAM) places grid on ground potential
 - Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$

https://doi.org/10.1016/j.nima.2019.162798 Huirong Oi

Cooling system for readout electronics

- Readout electronics will require a cooling system. **2-phase CO2-cooling** is a very interesting candidate.
 - A fully integrated AFTER-based solution tested on 7 Micromegas modules during a test beam.
- To optimize the cooling performance and the material budget **3D-printing of aluminum** is an attractive possibility for producing the complex structures required.
 - A prototype for a full module is **validated at LCTPC**.

14

• Power consumption

- Pad readout TPC@1mm×6mm@IHEP
- Total channels: **10**⁶
- Total power: <12 kW
 - 48mW/cm^2
 - WASA ASIC chip: 3.5mW/ch@40 MS/s

	AGET	PASA+ALTRO	Super-ALTRO	SAMPA
TPC	T2K	ALICE	ILC	ALICE upgrade
Pad尺寸	6.9x9.7 mm ²	$4x7.5 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
通道数	1.25 x 10 ⁵	5.7x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
读出结构	MicroMegas	MWPC	GEM/MicroMegas	GEM
增益	0.2-17 mV/fC	12 mV/fC	12-27 mV/fC	20/30 mV/fC
成型方式	$CR-(RC)^2$	CR-(RC) ⁴	$CR-(RC)^4$	CR-(RC) ⁴
达峰时间	50 ns-1us	200 ns	30-120 ns	80/160 ns
ENC	850 e @ 200ns	385 e	520 e	482 e @ 180ns
波形采样方式	SCA	ADC	ADC	ADC
采样率	1-100 MSPS	10 MSPS	40 MSPS	10 MSPS
精度	12 bit(external)	10 bit	10 bit	10 bit
功耗	<10 mW/ch	32 mW/ch	47.3 mW/ch	17 mW/ch
CMOS工艺	350 nm	250 nm	130 nm	130 nm

Material Budget – TPC – Very light

- TPC as the main tracker detector
 - A low material budget is a strong argument for a TPC
 - $\leq 5\% X_0$ in the barrel region
 - $\leq 25\% X_0$ in the endcap region
 - Increased material in endcap has no impact on jet energy resolution

		$45~{ m GeV}$	$100~{\rm GeV}$	$250 { m GeV}$
	$15\% X_0$	$0.28 {\pm} 0.01$	$0.32{\pm}0.01$	$0.47{\pm}0.02$
	$30\% X_0$	$0.30 {\pm} 0.01$	$0.31{\pm}0.01$	$0.47{\pm}0.02$
	$45\% X_0$	$0.30 {\pm} 0.01$	$0.32{\pm}0.01$	$0.52{\pm}0.02$
1	$60\% X_0$	$0.32{\pm}0.01$	$0.33{\pm}0.01$	

TPC – PRC2010 report

Material Budget – TPC – Validation

- Barrel of the material budget
 - Material budget of $1.2\%X_0$ was reached
 - Field homogeneity: $10^{-4} < \Delta E/E < 10^{-3}$
 - Operation gas (**negligible**): 1.2kg/m³
- Endcap of the material budget
 - Readout plane, electronics, detector: $<5\% X_0$
 - Cooling: $< 2\% X_0$
 - Power cables: $<10\% X_0$

layer of the wall	d[cm]	X_0 [cm]	d/X_0 [%]
copper shielding	0.001	1.45	0.07
polyimide substrate	0.005	32.65	0.02
outer GRP	0.03	15.79	0.19
aramid paper	0.007	29.6	0.02
honeycomb	2.35	1383	0.17
inner GRP	0.03	15.79	0.19
polyimide insulation	0.0125	32.65	0.04
mirror strips	$0.8 \cdot 0.0035$	1.45	0.19
polyimide substrate	0.0050	32.65	0.02
field strips	0.8 · 0.0035	1.45	0.19
epoxy glue	$\approx 6\cdot 0.007$	\approx 35.2	0.12
		Σ	1.21

• TPC as the main track detector for CEPC

- Material budget of endplate/chamber $\sqrt{}$
- Occupancy √
- Optimization of pad size $\sqrt{}$
- Channels and power consumption $\sqrt{}$
- Cost estimation $\sqrt{}$
- Ions affect and distortion $\sqrt{\text{(need R&D for Z pole)}}$
- Improved dE/dx+dN/dx $\sqrt{\text{(need R&D Z pole)}}$

Many thanks!