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Motivation 

• In D meson decay, there are several interacting phenomena including 
Cabibbo suppressed processes. Through Dalitz plot analysis, we can 
measure their relative branching fraction to understand the dynamics of 
two body charmed meson decay. 
 

• K S wave and low-mass K scalar resonance  have been observed 
significantly in earlier experiments (MARKIII, NA14, E691-791, CLEO) 
through dalitz plot analysis.  
 

• BES-III have taken huge data at charm threshold.  Before perform Dalitz 
analysis on data, MC study in necessary. D+Ks

+0 is a good channel to 
measure K S wave, because D++0 is doubly Cabbibo suppressed. 
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MC Sample 

Generator Events 

DD EvtGen 105,600,000 

qq LUNDA 48,800,000 

Uniform Ks+0 PHSP 5,000,000 

Dalitz Ks+0 User defined Dalitz 5,000,000 

50,000 

50,000 

etc. 

BES-III MC simulation (BOOST) is based on Geant4. 
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Event Selection 

• Particle ID for two +, one - and two photon candidates 

• Kinematic fit: 

 0, K0
S and D+ masses constrained 

 loop all combinations, and select the three candidate particles 
with smallest chisquare. 

 chisq<10 
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Signal Fraction 

CBShape 

Nsig-in Nsig-fit Nbkg-in Nbkg-fit Fsig-in Fsig-fit 

257391 2564661005 7272 8537161 0.9725 0.96780.0008 

132293 132058734 7244 7647153 0.9481 0.94530.0014 

99201 99163161 7238 7424146 0.9320 0.93030.0018 

ARGUS 
Mix 

Signal MC 

Background from non-
signal DD and qqMC 
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PHSP MC 

 

Dalitz MC 
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PDF 
• Defines probability density function (p.d.f.) 

– P(x,y)=fsigNS|M(x,y)|2(x,y)+(1-fsig)NBB(x,y) 
– NS=1/|M(x,y)|2(x,y)dxdy 
– M(x,y) are decay matrix elements 

 

• Background p.d.f.: (sideband ) 
– PB(x,y)=NBB(x,y) 
– PB(x,y)dxdy= NBB(x,y)dxdy=1 

 

• Efficiency p.d.f.: (Uniform MC) 
• P(x,y)=N(x,y) 
– P(x,y)dxdy= N(x,y)dxdy=1 

 

• Maximum likelihood fit to optimize parameters (Fitter:Minuit) 
– L=-2logP(xi,yi) 
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Decay Amplitude 
• The decay matrix element is sum of all intermediate resonance 

amplitude and non-resonance amplitude: 
• M(DK)=cNR+Mr+M 

• Non-resonance: uniform phase space 
– cNR=aNReiNR 

• Resonance: 
• Mr=aReiRAr(abc|r) 

• For DRc,Rab, the amplitude 
• AR(abc|R)=Z(J,L,l,p,q)FR

L(rDp)FR
L(rRq)TR(ab),         Blatt-Weisskopf form factor 

• Z describes the angular distribution of the final state  
• Tr(ab): Breit-Wigner formalism 

• Formulation for Breit-Wigner resonance decaying to spin-0 particle and b: 
– TR(ab)=1/(m2

R-m2
ab-imRab(q)) 

– = R(q/qR)2L+1(mR/mab)FR
L(rRq)2 

• :  a Breit-Wigner function with constant width 
– A(m)=1/(sR-m2), sR=Re+iIm 

 

– Fit fraction: 
– |aReiRAR(abc|R)|2dmabdmbc  / |aRei

RAR(abc|R)|2dmabdmbc  
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• p.d.f. of efficiency is parameterized as polynomial multiplied threshold functions: 

– (x,y)=T(v)(1+axx+ayy+axxx
2+axyxy+ayyy

2+axxxx
3+axxyx

2y+axyyxy2+ayyyy
3) 

– The threshold function is taken as a exponential form: 

– T(v)=a0+(1-a0)[1-exp(-athv|x-xedge|)] 

Efficiency Parameterization 

PHSP MC 

- 

Fitted p.d.f 

= 

Residuals 

- = 

PHSP MC Fitted p.d.f Residuals 

3rd polynomial function  1st polynomial function  

2/n: 1922/1255 (3rd), 2022/1259(2nd), 2176/1262(1st) 
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• Dominant background source: 
• D+K0

Sa1(1260)+ 

• D0K-+0 

• D0K0
S

+-0 

 

 

 

 

 

 

Background Parameterization 

Backgrounds from D0 bring a 
component of K*(892)+ , and other 
most resonances in background are 
(770) and K*(892)0. 
Hence, it is difficult to measure 
doubly Cabbibo suppressed channel 
in this case. 

p.d.f. of background is parameterized as dominant 3rd order polynomial 
function added by non-interfere resonance components : 

B(x,y)=T(v)(p3(x,y) +f1|M(770)|2+f2|M(K*(892)+|2+f3|M(K*(892)0|2) 
p3(x,y)=1+bxx+byy+bxxx

2+bxyxy+byyy
2+bxxxx

3+bxxyx
2y+bxyyxy2+byyyy

3 
 

Example for one sideband choice(MC)  
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Signal Fit 
pure MC signal: 2/n=756/761  

MC signal and DD,qq background:  2/n=1008/902 
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• MC sample:  

– different mixture of intermediate resonance  ( by user defined DDalitz 
generator) 

• Initialization: 

– same resonance choice as input 

– fixed magnitude of (770) as 1, phase as 0 

– others floated from 0 

• Always the fitted results can recover amplitude within statistical error. 

Input-Output Check 

An example of input amplitude and fitted amplitude(statistical error only) 
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Toy MC Check  

Toy: 1000 groups, each 10000 events MC sample: 
        events: 93500 
        number: 1000 
 
• The likelihood values follow a 

normal distribution. 
 

• The pull values follow normal 
distribution, which close to 
(0,1). 

pull=(vfit-v0)/v 
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MC sample: 
        events: 40000(generated) 
        number: 125 
 
• Most of pull distributions follow 

(0,1) normal distribution, but 
some of them become bad 
because of systematic affect. 

 

Detector MC Check  
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Perform different option on Dalitz plot fit, and 
compare the results. 

 

• Efficiency 
– different efficiency function: 1st, 2nd and 3rd polynomial  

 

• Background 
– different sideband choice 

– change fsig 

 

• Resonance 
– (1450) 

– (1700) 

– :  

 

Validation 
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• 1st 

• 2nd 

• 3rd 
• pure MC signal(TOP) 

 

• mix 7% 
background(BOTTOM) 

Efficiency 


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• Three sideband examples (tested more): 
1.7GeV<mrecoil<1.75GeV     1.8GeV<mrecoil<1.82GeV    1.82GeV<mrecoil<1.84GeV 

• 3rd polynomial for efficiency is selected 
• Change fsig smaller 0.5% than real mixed value, since the systematic uncertainty is 

about 0.5%. (from 0.93 to 0.925 in fit) 
 
 
 

Background 

Three sideband examples (red, black, blue) and a changed fsig case (green)  


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• Input: 
– (1450) only and others (pure MC signal) 

• Fit: 
– (1450):                         2/n=756/761 

– (1700):                         2/n=793/756 

– (1450) and (1700):   

(1450) and (1700) 


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• Input: 
– no  component 

• Fit: 
– include  

 


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Note: the statistical errors become larger 

goodness become worse a little:  288/283 (without  fit) 290/277 (with  fit) 
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Summary 
• Simulate huge MC events and perform Dalitz analysis on MC events. 

 
• Expected resonances components can be recovered through Dalitz plot 

fit with statistical uncertainty at BES-III. 
 

• The analysis is more sensitive for K*(892), K*0(1430), K*2(1430) than 
K*(1680) and heavy  mesons. 
 

• Using simple 3rd polynomial function for efficiency and sideband for 
background, there is some systematical variation. But the variation 
“seems” un-sensitive by different choices. Because they are just few 
test.  
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Thanks! 
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