

Status of Belle II

Chao Liu USTC (Belle/Belle II Collaboration)

Physics motivation
Super KEKB design
Belle II detector
Some physics
Summary

B- Factories (KEKB&PEP-II): A Success Story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decays (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in b→sll has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

2011/10/21

Status of Belle II

World maximum luminosity – at KEKB

Peak lumi record at KEKB: L=2.1 x 10³⁴/cm²/sec with crab cavities

KEKB:

Why to upgrade?

- B factories \rightarrow is SM with CKM right?
 - Success of B-Factories: confirmation of KM mechanism of CPV
 - ✓ Standard Model works well in this flavor sector
- - □ Still room for corrections from New Physics at O(10%)
 - Hints of NP: tensions between results from B-Factories
 - Much larger dataset is NEEDED

• Key Measurements of Super KEKB:

- Measurement of the Unitary Triangle, but with a precision an order of magnitude better than what we have now.
- Other potential measurements that are sensitive to BSM.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavor physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the physics far beyond the TeV scale.

Super KEKB luminosity profile

Requirements for the Belle II detector

Critical issues at L= 8 x 10³⁵/cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy - fake hits and pile-up noise in the EM Calorimeter
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Special features required
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Result: significant upgrade

Status of Belle II

Belle II: design concept

Belle II Detector (in comparison with Belle)

Detector upgrade

Belle-II vertex detector

pβsin(θ)^{5/2} [GeV/c] 11

Central Drift Chamber

Belle-II Particle Identification System

Completely different from Belle PID:

- better K/ π separation
- more tolerance for BG
- less material

(better calorimeter resolution)

 $B^+ \rightarrow \rho^+ \gamma$ analysis

TOP (Barrel PID)

Quartz radiator

- •2.6m^L x 45cm^W x 2cm^T
- •Excellent surface accuracy

•MCP-PMT

 Hamamatsu 16ch MCP-PMT •Good TTS (<35ps) & enough lifetime •Multialkali photo-cathode \rightarrow SBA

Beam test done in 2009

•# of photons consistent Time resolution OK

915mm

875mm

quartz

Aerogel RICH (endcap PID)

Clear Cherenkov image observed

Cherenkov angle distribution

ahist 64801 0.3092 Mear RMS 0 07419 6000 γ^2 / nd 143.5 / 28 6129 + 39.4 consta 3067 + 0.000 5000 0.01349 ± 0.00007 -192.6 + 204000 BG slop 1715 ± 69 # of tracks : 2700 3000F # Photons : 41339.7 +- 227.3 Photon/track: 15.31 +- 0.08 BG / track : 2.00 +- 0.03 2000 run048 1000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6.6 σ π/K at 4GeV/c !

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices→ Cherenkov images from individual layers overlap on the photon detector.

ECL and KLM

K_L - μ detection with KLM

- Resistive Plate Chambers to measure hadronic K_L showers and muon tracks
- Background in barrel consistent with cosmic ray flux →no change needed
- Background increase in endcaps by factor 20-40 (worse shielding of neutrons along beams)
- Endcap RPCs will be replaced with scintillators
 better beam-background tolerance

Electromagnetic Calorimeter

- >Background: pile up noise by soft background photons, fake clusters from high energy photons 10 times higher
- >Degradation of crystals in endcaps due to high radiation dose→ Replace CsI(TI) with pure CsI in endcaps
- >New electronics with waveform sampling

to measure time and amplitude: fake clusters suppresed by factor 7

Expected performance: 5-10% lower efficiency with similar S/B level

DAQ Overview

- At full luminosity, the data rate is 600 MB/sec.
- A high performance DAQ system is being designed by KEK and IHEP Beijing

		Belle	Belle II	Global DAQ Design	* Timing dist. scheme is not
	Trigger rate (kHz)	0.3-0.5	20-30	~0.1M chan. ~500 COPPERs ~50 R/O PCs	HLT farms ~10 units of ~150 cores/unit
Level 1 Trigger	Event size (kBytes)	40	300		
	Data rate (MB/s)	20	6000	Determined tx PC	
High	Reduction	1/2	1/10		
Level Trigger	Storage Bandwidth (MB/s)	20	600	Rocket IO over fiber	
2011/10	/21	21	Sta	Near detector E-hut	Control room

Construction Schedule of Super KEKB/Belle II

Status: approved, under construction

				2	010						2	2011	1							201	2							2	013	3							20	014				
		1 2	2 3 4	56	578	39	1(1	1121	2	3 4	5	6 7	8	91	(111	121	. 2	3 4	4 5	6 7	78	9	1(1	112	1	2 3	3 4	5	6 7	8 7	9 :	1(1	112	1 2	2 3	4	56	7	8 9	9 10	1117	2
Belle roll-out																																										
Belle disassen	n																																									
Rotation																														?												
E-KLM	R&D	R&D)																																							
	Production							S	rip p	orodu	ction	, fibe	er glu	eing																												
	Installation					_				_								A	ssen	nbly,	Inst	allat	ion							_				_	_		_					
B-KIM	D 2 D				Der							_												_											_		_		_			
D-KLM	Production				Not	, 																								-				-	-		-					
	Installation																						A e e e	amh	hz b	netal	latio	n						-	-		-				_	
	motanation																	-					1330		y, 11	IStel	latio							-	-		-					
FCI	Prototyping evaluation	Prote	otyping	Eva	luation	n of	reado	ut eler	tron	lics																																
202	Production												Cor	nec	tor-B			E	arrel	elec	troni	ics									End	Icap	elec	troni	ics							
	Installation																																									
																																			-							
A-RICH	Aeroael	R&D)																					Pr	odu	ctior	1															
	HAPD	R&D)							P	roduc	ction																														
	ASIC	R&D)															Proc	ductio	on																						
	Installation																																									
TOP	Quartz Bar	Test	produc	tion,	evalu	atior	n							P	roduc	tion																										
	MCP-PMT	Test	produc	tion,	evalu	atior	Pro	ducti	on																																	
	Installation																																									
CDC	Chamber	Desi	gn					F	abr	icat	ion																															
	Readout electronics	R&D																					Pro	du	ctic	on																
SVD	Sensor	Eval	uation				Pro	ducti	on																																	
	Hybrid	Prote	otyping	and	Evalua	atior	1			Pro	duci	tion	1																													
	Ladder													Ass	emt	olv																										
	Ladder mount																									Lado	der r	nour	ıt						-							
PXD	Sensor	Prote	otyping.	, test			D	esign	of P)	XD7 ((final	vers	ion	PXC)7 p	roc	ess	inc	i, th	inn	ing																					
	ASIC	Prote	otyping,	, test											sŵ	, DI	HP, I	DCI	D																							
	Module																											Mod	lule	pro	duct	ion										
	Module mount																																	mod	lule	moi						
																																_										
Beam pipe		R&D	, evalua	ation	S											F	abr	ica	tion																							
						_								_	+	_	+	_						_			_		_			_										
BP+PXD+SVD	Integration					_					+			_	+	_		_						_		_	_		_			_		_	_							
	Installation)DC	ia	hb	Ч	to	m	2	th	h	th		m	12/	~r	hir	סו			\mathbf{n}	m	ic	e c	in	n	in	$\mathbf{\alpha}$														

schedule and keep up with flavor physics at LHC

Belle II Collaboration

400 members - 60 institutions - 15 countries

Physics at Super KEKB/Belle II

- Key Measurements of Belle II:
 - Measurement of the Unitary Triangle, but with a precision an order of magnitude better than what we have now.
 - Other potential measurements that are sensitive to NP.
 - CPV in b \rightarrow s penguins decays, B \rightarrow tv, B \rightarrow Dtv, LFV in t decays
 - A_{FB} in $B \rightarrow K^* I^+ I^-$, DCPV in $B \rightarrow K\pi$, etc.
- Measurements related to charm physics
 - D⁰-D⁰bar Mixing and CPV
 - Measurement of φ^3
 - Rare and (semi)lepton D decay
 - ISR

D⁰-D⁰bar mixing and CP violation

The mixing parameters x, y can be expected within the SM: $|x|,|y| \sim Q(10^{-2})$

World averages relating to D⁰-D⁰bar mixing and CPV while CPV allowed:

$$|q/p| = 0.89^{+0.17}_{-0.15}$$

 $Arg(q/p) = (-10.1^{+9.4}_{-8.8})^{\circ}$
 $x = (0.63^{+0.19}_{-0.20})\%$

Combined Parameter Current $\pm 0.05 \pm 0.10$ y_{CP} [%] $\pm 0.39 \pm 0.10$ $\pm 0.12 \pm 0.10$ $\pm 0.10 \pm 0.06$ A_{Γ} [%] $\pm 0.33 \pm 0.06$ $\pm 0.04 \pm 0.06$ x [%] $\pm 0.31 \pm 0.10$ $\pm 0.10 \pm 0.10$ $\pm 0.03 \pm 0.10$ ± 0.12 y [%] $\pm 0.26 \pm 0.07$ $\pm 0.08 \pm 0.07$ $\pm 0.03 \pm 0.07$ ± 0.09 |q/p| $\pm 0.30 \pm 0.08$ $\pm 0.10 \pm 0.16$ $\pm 0.03 \pm 0.16$ ± 0.08 ϕ [rad] $\pm 0.30 \pm 0.06$ $\pm 0.10 \pm 0.06$ ± 0.08 $\pm 0.03 \pm 0.05$ x'^2 [10⁻³] $\pm 0.23 \pm 0.09$ $\pm 0.07 \pm 0.09$ $\pm 0.02 \pm 0.09$

 $\pm 0.12 \pm 0.16$

 $L = 5 \text{ ab}^{-1}$

 ± 0.11

y' [%]

 $\delta_{K\pi}$ [rad]

 $\pm 0.42 \pm 0.16$

 $L = 50 \text{ ab}^{-1}$

 $\pm 0.04 \pm 0.16$

Combined

 ± 0.09

 ± 0.06

 ± 0.06

 ± 0.05

 ± 0.08

Measurement of ϕ_i

$$\phi_{3} \equiv -\arg\left[\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right] \equiv \arg V_{ub}^{*}$$

$$r_{B} = \frac{\left|A(B^{-} \rightarrow \overline{D}^{0}K^{-})\right|}{\left|A(B^{-} \rightarrow D^{0}K^{-})\right|} = \frac{\left|A(B^{+} \rightarrow D^{0}K^{+})\right|}{\left|A(B^{+} \rightarrow \overline{D}^{0}K^{+})\right|}$$

$$B^{\pm} \rightarrow D^{(*)}K^{\pm} \quad D^{0} \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$$

by Belle, 605fb⁻¹ model-dept dalitz method PRD 81, 112002(2010) $\phi_3 = 76^{\circ+12^{\circ}}_{-13^{\circ}}(stat) \pm 4^{\circ}(syst) \pm 9^{\circ}(model)$

by Belle, 710fb⁻¹ model-indept dalitz method $\phi_3 = 77.3^{\circ+15.1^{\circ}}_{-14.9^{\circ}}(stat) \pm 4.1^{\circ}(syst) \pm 4.3^{\circ}(c_i, s_i)$ scale to 0.8 50ab⁻¹ Υ (4S), 0.6 15fb⁻¹ψ(3770): 1-α∟ 0.4 0.2 2011/10/21 Status of Belle II 50 100 125 150 25 75 Phi3 (deg)

$$M_{\mp} = A[f(m_{\pm}^{2}, m_{\mp}^{2}) + r_{B}e^{i(\delta_{B}\mp\phi_{3})}f(m_{\mp}^{2}, m_{\pm}^{2})]$$

$$M_{\pm} = r_{B}\cos(\delta_{B}\pm\phi_{3}), y_{\pm} = r_{B}\sin(\delta_{B}\pm\phi_{3})$$

$$C = \cos(\delta(m_{\pm}^{2}, m_{\pm}^{2}) - \delta(m_{\pm}^{2}, m_{\pm}^{2}))$$

$$M_{\pm} = r_{B}\cos(\delta_{B}\pm\phi_{3}), y_{\pm} = r_{B}\sin(\delta_{B}\pm\phi_{3})$$

Semileptonic D meson decays

$D^0 \rightarrow \pi lv \ 282 \ fb^{-1}$ by Belle, PRL 97,061804

 $f_+^{\pi}(0) = 0.624 \pm 0.020 \pm 0.030$

 $f_{+}^{\pi}(0)^{LQCD} = 0.64 \pm 0.03 \pm 0.06$

D⁰→µv 548 fb⁻¹ by Belle, PRL 100,241801 $f_{D_s}^{LQCD} = (241 \pm 3)MeV$

 $f_{D_s} = (275 \pm 16 \pm 12) MeV$

D⁰→ ϕ lv 78 fb⁻¹ by BaBar, arXiv:hep-ex/0607085 $r_V = 1.636 \pm 0.067 \pm 0.038$ $r_2 = 0.705 \pm 0.056 \pm 0.029$

Potential of ISR: competition or complementarity?

Number of events of the vector meson production at 8000 fb⁻¹ (@Y(4s)

φ	1.5×10 ⁸
ψ	2.3×10^{8}
ψ(2S)	7.8×10 ⁷
ψ(3770)	9.7×10 ⁶
Y(1s)	1.3×10^{8}
Y(2s)	1.2×10^{8}
Y(3s)	2.4×10^{8}

$$\frac{dl}{Ldm} = \frac{2\alpha m}{\pi s} \left\{ \frac{s+m^4}{s(s-m^2)} \left(\ln \frac{s}{m_e^2} - 1 \right) \right\}$$

	KEKB	VEPP- 2000	BEPC-II
Luminosity, cm ⁻² s ⁻¹	8·10 ³⁵	10 ³²	10 ³³
Integrated lum. (per 10 ⁷ s)	8000 fb ⁻¹	1 fb ⁻¹	10 fb ⁻¹
Integrated in the range [1-2] GeV	8 fb ⁻¹ (~0.8 @ θ>0.7)	1 fb ⁻¹	
Integrated in the range [2-3] GeV	20 fb⁻¹ (~2 @ θ>0.7)		10 fb ⁻¹

Summary

- Super KEKB/Belle II aims for (discovering and) understanding the New Physics. Target Luminosity of Super KEKB is 8x10³⁵/cm²/s, will provide 50ab⁻¹ by 2020-2021.
- The upgrade project is already approved by Japanese government and construction has been started.
- Belle II will give similar or better performance than Belle even under higher beam background.
- Belle II will start data taking in 2014. We can wait for new exciting results in the next decade

KEKB – no crab crossing

KEKB head-on (crab crossing)

1μm 5mm

Nano-Beam SuperKEKB

Design Concept of SuperKEKB

 Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.

• Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (× 20)

- Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (× 2)
- Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \frac{R_L}{R_y} \right) \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

• Beam energy: $3.5/8.0 \rightarrow 4.0/7.0 \text{ GeV}$

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power Re-use the KEKB tunnel.
We have no option for polarization at present.
Re-use KEKB components as much as possible.
Preserve the present cells in

♦ Preserve the present cells in HER.

Replace dipole magnets in LER, re-using other main magnets in the LER arcs.

Machine design parameters

	KE	KB	Super			
parameters		LER	HER	LER	HER	units
Beam energy	E_{b}	3.5	8	4	7	GeV
Half crossing angle	φ	1	1	41	. 5	mrad
Horizontal emittance	8 x	18	24	3.2	4.3-4.6	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β _x */β	1200	/5.9	32/0.27	25/0.31	mm
Beam currents	I_b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ y	0.129	0.090	0.0886	0. 0830	
Luminosity	L	2.1 x	x 10 ³⁴	Q v	1035	$cm^{-2}s^{-1}$

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

Demands on the detector

Total cross section and trigger rates with $L = 8 \times 10^{35}$ cm⁻² s⁻¹ from various physics processes at Y(4S).

Physics process	Cross section (nb)	Rate (Hz)
$Y(4S) \rightarrow BB$	1.2	960
Hadron production from continuum	2.8	2200
$\mu^+\mu^-$	0.8	640
$\tau^+\tau^-$	0.8	640
Bhabha (θlab> 17°)	44	350 ^(a)
γγ (θlab> 17°)	2.4	19 (a)
2γ processes (θlab> 17°, pt > 0.1GeV/c)	~80	~ 15000

Total ~130 ~20000

(a) rate is pre-scaled by a factor of 1/100

2011/10/21

The requirements for the trigger system are:

- 1. high efficiency for hadronic events;
- 2. maximum average trigger rate of 30 kHz;
- 3. fixed latency of about 5 µs;
- 4. timing precision of less than 10 ns;
- 5. minimum two-event separation of 200 ns;
- 6. trigger configuration that is flexible and robust.

SuperKEKB/Belle II funding Status

KEKB upgrade has been approved

- 5.8 oku yen (~MUSD) for Damping Ring (FY2010)
- 100 oku yen for machine -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government by December 2010; the project is in the JFY2011 budget as approved by the Japanese Diet end of March 2011

Several non-Japanese funding agencies have
also already allocated sizable funds for the
upgrade.

 \rightarrow construction started!

[Media Contact] Youhei Morita, Head of Public Relations Office, KEK tel. +81-29-879-6047

Status of Belle II

学共同利用機関法人

copyright(c) 2010, HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION, KEK 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

| proffice@kek.jp | Copyright | Send Question

Physics at 50/ab, a few examples

202X@50/ab

 $\textbf{B} \rightarrow \textbf{K^*} \gamma \text{ t-dependent CPV}$

SM: $S_{CP}^{K^*\gamma} \sim (2m_s/m_b) sin 2\phi_1 \sim -0.04$

 $S_{CP}^{K_{S}\pi0\gamma} = -0.15 \pm 0.20$ $A_{CP}^{K_{S}\pi0\gamma} = 0.07 \pm 0.12$ Expected sensitivity - 0.03 for

S in Ks pi0 gamma with 50 ab-1

NP search with 50 ab⁻¹

Achievable BR 997 B factories (Belle, BaBar) 2006 τ→μγ ∎ τ→μη **▲** τ→μμμ 10 mSUGRA+seesaw SUSY+SO(10) 10^{-8} SUSY+Higgs Super B SM+seesaw 10 10 -1 10⁻³ 10⁻² 10 Luminosity (ab⁻¹)

Expected sensitivity $\tau \rightarrow \ell \gamma \quad \text{Br} \sim O(10^{-8} \circ 9)$ $\tau \rightarrow \ell \ell \ell$, I+meson Br $\sim O(10^{-9} \circ 10)$

includes uncertainties from theory (on Vub and f_B), 0.04 purely exp.