Charm physics in LHCb (part onetime independent measurements)

W.M.Bonivento INFN Cagliari-ITALY on behalf of the LHCb Collaboration

Outline

- LHCb detector
- Experimental approach
- Charm cross section and spectroscopy
- Time integrated CPV measurements
- Rare Decays
- Charm input to CKM $\gamma/\Phi3$ angle measurement
- second LHCb talk: S.Bachmann time dependent CPV and mixing

CERN LHC: pp machine with Vs=7TeV (due to the 2008 accident)

Pseudo-rapidity coverage \rightarrow 1.9-4.9

Originally designed for b physics, but now is pursuing a wide charm physics program (out of 4 physics WGs, one is Charm)

10/23/11

W.M.Bonivento - Beijing 2011

A typical event!

Challenges and goodies of charm physics in LHCb (1)

- at 7TeV σ(ccbar) ≈ 6mb, σ(bbar) ≈ 0.3mb, σ(pp inelastic)≈60mb
 - huge σ(ccbar); background from secondary charm from b already low from the start of the selection
 - and very favorable ratio to inelastic σ (only a factor of 10!)
 - \rightarrow high purity selections with few and soft IP, displaced vertex and p_T cuts
 - \rightarrow very large yields (the highest on the market)
- however due to lower D meson daughter p_T and IP wrt B mesons, trigger thresholds have to be kept low
 - →tough requirements for trigger, tracking, online and offline reconstruction, both for bandwidth and timing, and last but not least storage!

Challenges and goodies of charm physics in LHCb (2)

- yields (and competition with other experiments) decrease with # of tracks in the final state due to tracking efficiency (a factor/track) and to trigger efficiency (the meson p_T is divided among the n---tracks)
 - the competition with the B factories for channels with ≥4 tracks is tough
- we mostly concentrate on channels with charged tracks in the final state (due to the large number of π^0 in the event and to the modest resolution EM Calorimeter)
- the large data yields are also a problem for MC → very tough to get equivalent MC statistics of full simulation (to test for e.g. detector effects in CPV asymmetries)
 - toy studies need to be extensively used
- Charm physics at hadron colliders has been successfully pioneered by the Tevatron experiments!

Then we write down to disk at 200Hz rate (stripping) at present instantaneous luminosity we collect:

5 * 10³ tagged D^{*±} \rightarrow (D0 \rightarrow K[±]K[∓]) π^{\pm}

 $3 * 10^5$ untagged $D^0 \rightarrow K^-\pi^+$ per pb⁻¹ (now we have >1fb⁻¹) !!

The LHCb running conditions

2010 was a "learning phase" year with fast varying running conditions and luminosity at the end of it we collected 37pb⁻¹ and we were running at a pile-up of up to 2.5 collisions/event in average (with the design being 0.4) but we coped well with it!

In 2011 we've been running with more steady conditions of ≈ 1.5 collisions/event with L=3.5•10⁻³² cm⁻¹s⁻¹ (1.5x the design value) with luminosity leveling collecting up to more than 1fb⁻¹ by now (while GPE collected about 5pb⁻¹)

Prompt open charm cross section

D⁰ cross section Preliminary: 2010 data 2nb⁻¹

no pile-up data minimum bias trigger

Total production cross-section $\sigma(pp \rightarrow ccX)$ in 4π :

- combined average of D0, D+, D*+, Ds+
- charm from b subtracted out
- using average of transition probabilities measured at $\Upsilon(4S)$ and at Z^0

→ LHCb: $\sigma(pp \rightarrow ccX)$ in $4\pi = (6100 \pm 934) \mu b$

• 20 times higher than $\sigma(bb)!$

Double charm cross section in the pipeline

Charm meson spectroscopy

- Predictions of the D and D_s mass eigenstates were performed in 1985 using QCD potential models.
- The masses of D_{(s)1} and D^{*}_{(s)2} states were successfully predicted before their discoveries.
- In 2003 observation of two unexpected new states: D^{*}_{s0}(2317) and D_{s1}(2460).
- Recently BaBar and Belle observed new D_J and D_{sJ} states: D(2550), D*(2600), D(2750), D*(2760), D_{s1}*(2710), D_{sJ}*(2860), D_{sJ}(3040). Many of them need to be confirmed.

Decay modes

Inclusive production

11

2

Selected meson final states

Thank to the excellent performances of LHC and LHCb detector, D_J and D_{sJ} spectroscopy feasible with the same sensitivity of the B-factories

	Resonance	Mass (MeV/c²)	Width (MeV)
	D _{s1} *(2700)	2710 ± 2 ⁺¹² ₋₇	149 ± 7 ⁺³⁹ ₋₅₂
092003(2009)	D _{sJ} *(2860)	2862 ± 2 ⁺⁵ ₋₂	48 ± 3 ± 6

Dπ

CP Violation

- 3 types of CP violation:
 - − In mixing: rate of $D^0 \rightarrow D^0$ bar and D^0 bar $\rightarrow D^0$ differ
 - In decay: amplitudes for a process and its conjugate differ
 - In interference: between mixing and decay diagrams
- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Exactly how small is a matter of debate... but for sure well below present limit of several 10^{-3}
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 - in singly-Cabibbo-suppressed modes O (few 10⁻³) possible
- Both can be enhanced by NP, in principle up to O(%)
- In LHCb we have now the statistics to make O(0.1%) measurements!

indirect

direct

Experimental issues of time integrated CPV in LHCb

- Experimentally, we have to cope with fake asymmetries:
 - production asymmetries (pp collider)
 - detection asymmetries (different K+/K- interaction lengths, soft pion efficiency asymmetry)
 - backgrounds
- Moreover the dipole magnet makes the detector left-right asymmetric for + charge and – charge particles
 - a localized detector inefficiency translates into a fake CPV asymmetry
 - 1) we developed robust observables:
 - Miranda technique for SCS decay $D^+ \rightarrow K^+ K^- \pi^-$
 - difference of two CPV asymmetries in SCS decays into CP eigenstates $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$

2) swap the magnetic field from time to time

• signal purity is a must \rightarrow excellent detector performance

D->KKπ: the method

- Model-independent search for CPV in Dalitz plot distribution
- Compare binned, normalized Dalitz plots for D⁺ and D⁻
 - Production asymmetry cancels completely after normalization.
 - Efficiency asymmetries that are flat across Dalitz plot also cancel.

$$\mathcal{S}_{CP}^{i} = rac{N^{i}(D^{+}) - lpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + lpha^{2} N^{i}(D^{-})}} , \qquad lpha = rac{N_{ ext{tot}}(D^{+})}{N_{ ext{tot}}(D^{-})}$$

- Method based on "Miranda" (*)approach -- asymmetry significance
 - In absence of asymmetry, values distributed as Gaussian(μ =0, σ =1)
 - Figure of merit for statistical test: sum of squares of S^i_{CP} is a $\chi 2$

(*) Phys. Rev. D80 (2009) 096006

See also BaBar: Phys.Rev. D78:051102 (2008); our dataset contains 10x more events and is of comparable size of Belle analysis of D $\rightarrow \phi \pi$:(arXiv:0807.4545)

$D \rightarrow KK\pi$: mass and Dalitz plot

Sensitivity to NP

- With this binning and 2010 statistics, run a set of toys with various CP asymmetries and see how often we get a 3-sigma signal.
- We implemented the CLEO-c Dalitz model to generate the toys
- We implemented both uniform binning and "adaptive"

- With no CPV, method does not produce a signal (good!)
- If we do see a signal, it will mean big CPV and thus new physics.

NB: in $D^+ \rightarrow K^- \pi^+ \pi^+$ there is a mechanism for a fake asymmetry that doesn't apply to the signal mode (kaon efficiency) Here the statistics is 10x larger than in the signal mode.

$Ds \rightarrow KK\pi$ control mode

Results for $D \rightarrow KK\pi$

Distributions of Sⁱ_{CP} with different binning

Results for $D \rightarrow KK\pi$

Binning	Fitted mean	Fitted width	χ^2/ndf	p-value (%)
Adaptive I	0.01 ± 0.23	1.13 ± 0.16	32.0/24	12.7
Adaptive II	-0.024 ± 0.010	1.078 ± 0.074	123.4/105	10.6
Uniform I	-0.043 ± 0.073	0.929 ± 0.051	191.3/198	82.1
Uniform II	-0.039 ± 0.045	1.011 ± 0.034	519.5/529	60.5

No evidence for CP violation in the 2010 dataset

Preview on 2011 statistics

Preliminary: 2011 data 220pb-1

$$\Delta A_{CP} = A_{CP} \left(D^{0} \rightarrow KK \right) - A_{CP} \left(D^{0} \rightarrow \pi\pi \right)$$

$$A_{RAW}(f) \equiv \frac{N(D^{0} \rightarrow f) - N(\overline{D}^{0} \rightarrow \overline{f})}{N(D^{0} \rightarrow f) + N(\overline{D}^{0} \rightarrow \overline{f})}$$

$$A_{RAW}(f)^{*} \equiv \frac{N(D^{*+} \rightarrow D^{0}(f)\pi^{+}) - N(D^{*-} \rightarrow \overline{D}^{0}(\overline{f})\pi^{-})}{N(D^{*+} \rightarrow D^{0}(f)\pi^{+}) + N(D^{*-} \rightarrow \overline{D}^{0}(\overline{f})\pi^{-})}$$

$$A_{RAW}(f) = A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$

$$A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{P}(D^{*+})$$

$$A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{P}(D^{*+})$$

$$A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f)$$

$$A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f)$$

$$A_{CP}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f) + A_{D}(f)$$

$$A_{CP}(f) + A_{$$

Look at difference in CP asymmetry between KK and $\pi\pi$: very robust against systematics

$$A_{RAW}(K^{-}K^{+})^{*} - A_{RAW}(\pi^{-}\pi^{+})^{*} = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$

 $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$ receive contributions from both indirect CPV (universal) and direct CPV (final state dependent) \rightarrow taking the difference we are sensitive (almost) only to the direct CPV contribution W.M.Bonivento - Beijing 2011 26

Fits to the data

Second order effects can however sneak in at second order through correlations between e.g. production and detection asymmetries, which might be p_T dependent \rightarrow to make the cancellation more effective the analysis is performed in bins of p_T and a weighted average is taken

Divide data up according to magnet polarity, trigger conditions. Fit (Δm + constant). Here are two example fits:

116k tagged $D^0 \rightarrow K^+ K^-$ 10/23/ \mathcal{B} 6k tagged $D^0 \rightarrow \pi^+ \pi^-$

W.M.Bonivento - Beijing 2011

Systematics and preliminary result

Effect	Uncertainty
Modeling of lineshapes	0.06%
D^0 mass window	0.20%
Multiple candidates	0.13%
Binning in (p_t, η)	0.01%
Total systematic uncertainty	0.25%
Statistical uncertainty (for comparison)	0.70 %

Preliminary: 2010 data 38pb-1

$$A_{CP}(KK) - A_{CP}(\pi\pi) = (-0.275 \pm 0.701 \pm 0.25)\%$$

Note: already competitive with the B-factories! Statistical error for BABAR 0.62%, Belle 0.60% But for CDF: 0.33% Expect systematic error to scale well with integrated lumi. Estimates very conservative, with large statistical component.

D⁰ production asymmetry

LHC is a pp machine and asymmetry may exist in D and B production. Knowledge of such an asymmetry important for CPV measurements and for QCD models.

The only external inputs are $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$.

• $A_{CP}(K\pi)$ assumed negligible.

• Solving the system of equations for the unknowns allows to determine the production asymmetry $A_{p}(D^{0})$.

Detection asymmetry of D^0 . Detection asymmetry of soft pion. D^0 and D^* production asymmetries.

Preliminary: 2010 data 38pb⁻¹

 $A_P(D^0) = (-1.08 \pm 0.32 \pm 0.12) \%$ No evidence of pT dependence so far

Other channels under study

- Beyond updating with 2011 statistics (>30x 2010) the above mentioned analysis of 2010 data, we have data on tape and we are analyzing :
 - Direct CPV in $D^+ \rightarrow Ksh$
 - T-odd correlations in $D^0 \rightarrow KK\pi\pi$
 - Direct CPV in Dalitz plot in other
 SinglyCabibboSuppressed D,Ds decays

The charm RD measurements in LHCb

- LHCb is well suited for measurements with muons in the final state, a bit less with e-(bremsstrahlung, modest resolution ECAL)
- High efficiency triggering on muons in LHCb
- Two main channels are being investigated:
 - $D \rightarrow \mu \mu$ FCNC, best limit Belle 1.7*10⁻⁷ @ 90% C.L.
 - SM predicts, even including a long range term <10⁻¹³

The charm RD measurements in LHCb

- D(s)+ $\rightarrow \pi \mu \mu$ with SS muons \rightarrow forbidden in SM, sensitive to Majorana neutrinos

present limits on the order of 10⁻⁶ for D+ modes and 10⁻⁵ for Ds modes

- D(s)+→πµµ with OS muons →FCNC, sensitive to RPV
 SUSY →need to study µµ invariant mass distribution
 to exclude regions of long range contributions
- Analyses with 2011 data in preparation

Status of γ/φ_3 measurements

 γ is the least well known angle ~20°

contributions to the WA courtesy UTFIT collaboration

Tree level γ/ϕ_3 measurements

CKM suppressed

color and CKM suppressed

CKM angle γ can be accessed through the interference of these b->c and b->u diagrams,

where the D⁰ and D⁰bar decay to a common final state:

ADS (Flavor specific): Κπ, Κπππ, ΚsKπ, K⁺ππ⁰ GLW (CP Eigenstates): KK, ππ, KKππ GGSZ Dalitz: Ksππ, KsKK

Measurement can be extended to final state K*0 with B0 decays

In practice compare B+ and B- rates, i.e. measure direct CPV

In LHCb we also measure y with the time dependent $A_{CP}(B_{S} \rightarrow D_{S}K)$

10/23/11

W.M.Bonivento - Beijing 2011

for multi-body decays r_D and δ_{D} vary over the Dalitz space

Input from charm physics to the γ measurements

- Quantum correlated decays give access to the strong phase difference
 - strong phase $\delta_D^{K\pi}$ for ADS \rightarrow 2body
 - From both quantum correlated measurements and single tag yields

- also related to mixing parameters

- mean strong phase δ_D^f and coherence factor R_f for ADS in D \rightarrow 3-4 body
 - $K\pi\pi^0$ turns out to be of high coherence \rightarrow useful for ADS
 - K3 π of low coherence \rightarrow useful to measure r_B

Input from charm physics to the γ measurements

- strong phase difference across the Dalitz plot in Dalitz analysis (GGSZ) D→K_shh
 - Amplitude model has good statistical sensitivity but give rise to a systematic of $\sigma(\gamma)=3-9^{\circ}$ which would be limiting for LHCb
 - With model independent (binned) approach + input from <u>quantum correlated measurement</u> at $\Psi(3770) \rightarrow \sigma(\gamma)=1.7-3.9^{\circ}$ for $K_s^{0}\pi\pi$ and $3.2 \rightarrow 3.9^{\circ}$ for $K_s^{0}KK$ (dominated by $\Psi(3770)$ statistics so it can improve with BES3)

Impact on LHCb measurement of γ

Expected γ precision using ADS/GLW modes (excluding K $\pi\pi^0$) at LHCb 2fb-1

An extension of the combined sensitivity study included Dalitz method with $K_s \pi \pi$. Trend suggests that sensitivity is dominated by B statistics with current charm constraints

The inclusion of the time-dependent analysis brings σ to about 5^o

<u>Current strong phase precision for these modes satisfactory until</u> <u>SuperBFactories/LHCb upgrade</u> (however this statement does not include the potential benefit of a binned analysis with $K3\pi$) The field is actually evolving and new channels are being considered

LHCb today

D_{CP} K A_{CP+} LP 2011 PRELIMINARY BaBar $0.25 \pm 0.06 \pm 0.02$ PRD 82 (2010) 072004 Preliminary: 2011 data Belle $0.29 \pm 0.06 \pm 0.02$ 343pb⁻¹ LP 2011 preliminary CDF $0.39 \pm 0.17 \pm 0.04$ PRD 81, 031105(R) (2010) LHCb. LHCb-CONF-2011-031 $0.07 \pm 0.18 \pm 0.07$ Average 0.27 ± 0.04 HFAG -0.2 0 0.2 0.4 0.6 0.8

GLW

Conclusion(1)

- LHCb has a very rich charm physics program ranging from mixing/CPV to rare decays and spectroscopy, mostly with decays to charged particles in the final state
- With 2011 data (1fb⁻¹)we already have the world highest statistics in many channels
- We expect to collect 5fb⁻¹ up to 2017 (phase 1) and 50fb⁻¹ (2019-2029?) with the upgrade
- For many years to come, at least until 2018, LHCb will be (together with BES3) the leading experiment in the field: statistical sensitivity to many observables such to rule out NP contributions (e.g. some channels of direct CPV)
- Still systematics such as production asymmetries in CPV and lifetime acceptance have to be treated with care and more new ideas on that need to be developed

Conclusion(2)

- In general, we have not tried yet to address channels with neutrals in the final state but things are starting, though it is not guaranteed it will be competitive.
- Channels with neutrinos remain peculiar to the e⁺e⁻ machines
- For tree level measurement of γ we need very much inputs from quantum correlated measurements at threshold to achieve the best precision

BACKUP:

the equations for extracting y from time-integrated tree level processes

Rate Equations for ADS/GLW

$$\begin{split} \Gamma(B^- \to (K^- \pi^+)_D K^-) &= N^{K\pi} (1 + (r_B r_D) + 2r_B r_D \cos(\delta_B - \delta_D^{K\pi} - \gamma)), \\ \Gamma(B^- \to (K^+ \pi^-)_D K^-) &= N^{K\pi} (r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D^{K\pi} - \gamma)), \\ \Gamma(B^+ \to (K^+ \pi^-)_D K^+) &= N^{K\pi} (1 + (r_B r_D) + 2r_B r_D \cos(\delta_B - \delta_D^{K\pi} + \gamma)), \\ \Gamma(B^+ \to (K^- \pi^+)_D K^+) &= N^{K\pi} (r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D^{K\pi} + \gamma)), \\ \Gamma(B^- \to (h^+ h^-)_D K^-) &= N^{hh} (1 + r_B^2 + 2r_B \cos(\delta_B - \gamma)), \\ \Gamma(B^+ \to (h^+ h^-)_D K^+) &= N^{hh} (1 + r_B^2 + 2r_B \cos(\delta_B + \gamma)). \end{split}$$

$$\mathbf{GLW} \qquad \qquad \mathbf{R}_{CP\pm} = \frac{2\Big[\Gamma(B^{-} \to D_{CP\pm}^{0}K^{-}) + \Gamma(B^{+} \to D_{CP\pm}^{0}K^{+})\Big]}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = 1 + r_{B}^{2} \pm 2r_{B}\cos\delta_{B}\cos\gamma \\ \mathbf{A}_{CP\pm} = \frac{2\Big[\Gamma(B^{-} \to D_{CP\pm}^{0}K^{-}) - \Gamma(B^{+} \to D_{CP\pm}^{0}K^{+})\Big]}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = \pm 2r_{B}\sin\delta_{B}\sin\gamma \\ \mathbf{ADS} \qquad \qquad \qquad \qquad \mathbf{R}_{ADS} = \frac{1}{2}\Big[\frac{\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-})}{\Gamma(B^{-} \to (K^{-}\pi^{+})K^{-})} + \frac{\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+})}{\Gamma(B^{+} \to (K^{+}\pi^{-})K^{+})}\Big] = r_{B}^{2} + r_{D}^{2} \pm 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma \\ \mathbf{A}_{ADS} = \frac{2\Big[\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) - \Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+})]}{\Gamma(B^{-} \to (K^{-}\pi^{+})K^{-}) + \Gamma(B^{+} \to (K^{+}\pi^{-})K^{+})} = 2r_{B}r_{D} \pm 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma / R_{ADS} \end{aligned}$$

Unknowns:

B: $\mathbf{r}_{B}, \delta, \gamma$ **D**: $\mathbf{r}_{D}, \delta_{D} \rightarrow \mathbf{Use} \mathbf{r}_{B}$ from PDG, δ_{D} from CLEO-c

CP- hard for LHCb (maybe φK_s?)
 With only CP+, we have 4 equations and 3 unknowns

How does this change if one has a multi-body final state? [See M. Gronau, PLB 557, 198 (2003) for a nice paper]

 $R_{\rm CP\pm}(X_s) = 1 + r_s^2 \pm 2\kappa r_s \cos \delta_s \cos \gamma ,$ $\mathcal{A}_{\rm CP\pm}(X_s) = \pm 2\kappa r_s \sin \delta_s \sin \gamma .$

Similar change for ADS observables

 $\sin^2 \gamma \le R_{\rm CP\pm}(X_s) \quad .$

Here, κ is a "dilution" or "coherence factor", $0 \le \kappa \le 1$, and δ_s is the average strong phase over the Dalitz plot.

We acquire an additional parameter κ though.

In principle solvable (4 eq & 4 unknowns), but weakly constrained fit.

Another option:

- Split DK $\pi\pi$ Dalitz plot into N kinematic regions.
- #Unknowns \rightarrow 3N + 1 (== 7, 10 for N = 2, 3)
- #Eqn's: 4N (== 8, 12 for N = 2, 3)