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To calculate correlated D decay rates at the J/Ψ(37700 we calculate the corre-
lated amplitude for the D and the D to decay to the states α and β at times
t1 and t2 respectively, where the times are measured in the center-of-mass (CM)
system and t = 0 is the time of the e+e− → cc production. Because the Ψ(3770)
is JPC = 1−− state, we antisymmetrize the amplitude with respect to charge
conjugation.

M =
1√
2

[
〈α|H|D0(t1)〉〈β|H|D0

(t2)〉 − 〈β|H|D0(t2)〉〈α|H|D0
(t1)〉

]
(1)

The time evolution of the D0–D0 system is described by the Schrödinger equation

i
∂

∂t




D0(t)

D0(t)



 =



M −
i

2
Γ








D0(t)

D0(t)



 , (2)

where the M and Γ matrices are Hermitian, and CPT invariance requires M11 =
M22 ≡ M and Γ11 = Γ22 ≡ Γ.
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Some Notation

The two eigenstates D1 and D2 of the effective Hamiltonian are

|D1,2〉 = p|D0〉 ± q|D0〉 , |p|2 + |q|2 = 1 . (3)

The corresponding eigenvalues are

λ1,2 ≡m1,2−
i

2
Γ1,2=



M −
i

2
Γ



±
q

p



M12−
i

2
Γ12



 , (4)

where m1,2, Γ1,2 are the masses and decay widths and

q

p
=

√√√√√√√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (5)

The proper time evolution of the eigenstates of Eq. 2 is

|D1,2(t)〉 = e1,2(t)|D1,2〉, e1,2(t) = e[−i(m1,2−iΓ1,2
2 )t]. (6)

A state that is prepared as a flavor eigenstate |D0〉 or |D0〉 at t = 0 will evolve
according to

|D0(t)〉=
1

2p

[
p(e1(t)+e2(t))|D0〉+q(e1(t)−e2(t))|D0〉

]
(7)

|D0(t)〉=
1

2q

[
p(e1(t)−e2(t))|D0〉+q(e1(t)+e2(t))|D0〉

]
. (8)

We adopt a version of the standard notation

Γ =
Γ1+Γ2

2
, x =

m1−m2

Γ
, y =

Γ1−Γ2

2Γ
. (9)

2



Forms of M and |M|2
After a bit of algebra we can write the matrix element as

2
√

2 M =




q

p
AαAβ −

p

q
AαAβ



 [e1(t1)e2(t2) − e1(t2)e2(t1)] (10)

+ (AαAβ − AαAβ) [e1(t1)e2(t2) + e1(t2)e2(t1)]

which has the form

2
√

2 M = X(e11e22 − e12e21) + Y (e11e22 + e12e21) . (11)

From this one calculates

8|M|2 = e−Γ(t1+t2) × { XX∗ (cosh yΓ∆t − cos xΓ∆t) (12)
− 2 )(XY ∗) sinh yΓ∆t + 2 *(XY ∗) sin xΓ∆t
+ Y Y ∗ (cosh yΓ∆t + cos xΓ∆t }

For xΓ∆t, yΓ∆t + 1 this can be approximated by

4|M|2 = e−Γ(t1+t2) ×




XX∗




(x2 + y2)

4
(Γ∆t)2



 (13)

− )(XY ∗) yΓ∆t + *(XY ∗) xΓ∆t

+ Y Y ∗


1 +
(y2 − x2)

4
(Γ∆t)2










• Y is the unmixed amplitude

• X is the mixing amplitude

• XY ∗ controls the interference terms in the mixing rate

see also Zhi-zhong Xing, Phys.Rev. D55 (1997) 196-218
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Correlated (K−K+, K−K+) decays
CP even versus CP even

For two CP-even eigenstates α and β,

Y = 0 (14)

X =




q

p
−

p

q



 AαAβ .

so the rate is

|M|2 = e−Γ(t1+t2) ×
∣∣∣∣∣∣∣

q

p
−

p

q

∣∣∣∣∣∣∣

2

|Aα|2 |Aβ|2



x2 + y2

4



 (Γ∆t)2 . (15)

In the limit that CP is a good symmetry, this rate goes to zero. To estimate what
might be possible at SuperB, we take the numbers of K∓π± versus CP even events
observed by CLEO-c (605), scale by the approximate ratio of K−K+ plus π−π+

events observed (≈ 0.13) [to account for the value of |Aα|2 |Aβ|2 ], and scale by
the nominal relative luminosity. This procedure gives approximately 120K as the
coefficient of (x2 + y2) (Γ∆t)2/4. Using (x2 + y2) (Γ∆t)2/2 as an estimate of the
time integral, and taking x2 + y2 = 10−4, the integrated signal will be about

∣∣∣∣∣∣∣

q

p
−

p

q

∣∣∣∣∣∣∣

2

× 6 events . (16)
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Correlated (K−π+ , K−π) decays

A similar result obtains for common final states such as K−π+. If α = β then
Aβ = Aα and Aβ = Aα. Again, the unmixed amplitude goes to zero. However,
the pure mixing term does not require CP violation to be non-zero.

Y = 0 (17)

X =




q

p
AαAα −

p

q
AαAα



 .

In this case, Aα corresponds to the Cabibbo-favored amplitude and Aα to the
doubly Cabibbo-suppressed amplitude. With Aα = keiδAα the rate can be writ-
ten

|M|2 = e−Γ(t1+t2) ×
∣∣∣∣∣∣∣

q

p
k2ei2δ −

p

q

∣∣∣∣∣∣∣

2

|Aα|2 |Aα|2



x2 + y2

4



 (Γ∆t)2 . (18)

As a first approximation, we can ignore both the doubly Cabibbo-suppressed
amplitude and CP violation. In this case

|M|2 ≈ e−Γ(t1+t2) × |Aα|2 |Aα|2



x2 + y2

4



 (Γ∆t)2 . (19)

CLEO-c observes 600 K−π+, K+π− events, which corresponds to 2 |Aα|2 |Aα|2.
Scaling by relative luminosities, and again using 10−4 for (x2+y2), we can project
a mixing signal of 23 events in this channel and a similar number in K+π−

versus K+π−. While differences nominally can be due to direct CP violation,
indirect CP violation, or statistical fluctuation, given the existing HFAG bounds
on direct and indirect CP violation, any variation we observe in this channel will
be predominantly due to statistical fluctuations.
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Correlated (K'ν, K'ν) decays

For opposite-sign semileptonic decays we can choose α = K−'+ν and β = K+'−ν
for which

Y = AαAβ; X = 0 (20)

The rate is proportional to

|M|2 = e−Γ(t1+t2) × |Aα|2 |Aβ|2


1 +
(y2 − x2)

4
(Γ∆t)2



 . (21)

The only signature of mixing in this final state is the quadratic departure from
purely exponential decay which is proportional to (y2 − x2). This is less than one
part in 104, significantly less than the rate of statistical fluctuations. This final
state has no sensitivity to CP violation in mixing (q/p .= 1).

For same-sign semileptonic decays we can choose α = β = K−'+ν. In this case

Y = 0 X = −
p

q

(
A(D0 → K−e+νe)

)
. (22)

The corresponding rate is

|M|2 = e−iΓ(t1+t2)

∣∣∣∣∣∣∣




p

q



 AαAβ

∣∣∣∣∣∣∣

2 


x2 + y2

4



 (Γ∆t)2 . (23)

Extrapolating from CLEO-c’s opposite-sign Kπ rate, we estimate 23 mixing
events in each of K−e+νe versus K−e+νe and K+e−νe versus K+e−νe.
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Correlated (K'ν, K−K+) decays

The correlated decays of D0D
0

into a CP eigenstate and and semileptonic final
state are also (relatively) easy to understand. Consider Aα = A(D0 → K−e+νe)
and Aβ = A(D0 → K−K+) as an example such a final state. In this case

Y = AαAβ ; X = −
p

q
AαAβ (24)

The (small yΓ∆t, small xΓ∆t) limit for (K−'+X, K−K+) is

|M|2 = e−Γ(t1+t2) |Aα|2 |Aβ|2 × (25)




1 ∓ )(

p

q
) yΓ∆t ± *(

p

q
) xΓ∆t +

y2

2
(Γ∆t)2





.

For D
0 → K+'−X detected in conjunction with a CP even final state, (−p/q) in

XY ∗ becomes (+q/p) and Aα = A(D
0 → K+'−X). As a first approximation,

the difference between positive and negative decay time distributions will be
proportional to 

)(
p

q
) y − *(

p

q
) x



 × Γ |∆t| = y′Γ |∆t| (26)

for D0 → K−'+X and to


)(
q

p
) y − *(

q

p
) x



 × Γ |∆t| = y′′Γ |∆t| (27)

for D
0 → K+'−X. For q/p ≈ 1, the difference between y′ and y′′ measures |q/p|.
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Correlated (K−'+ν, K−π+) decays

The correlated decays to a semileptonic final state and a hadronic non-CP eigen-
state are somewhat more complicated. For the final state (K−π+, K−e+νe) we
can write

Aα = A(D0 → K−π+) Aα = keiδKπAα

Aβ = A(D0 → K−e+νe) Aβ = 0

where a, δ, φ, k and δKπ are real numbers. Writing The factor k ≈ tan2 θC is the
ratio of the magnitudes of the doubly Cabibbo-suppressed (DCS) and Cabibbo-
favored (CF) amplitudes. The angle δKπ is the relative strong phase between
the CF and DCS amplitudes to the same final state. The mixing and direct
amplitudes for (K−π+, K−e+νe) are

X = −
p

q
AαAβ Y = keiδkπAαAβ

The (small yΓ∆t, small xΓ∆t) limit for the (K−'+X, K−π+) decay rate is

|M|2 =
1

4
e−Γ(t1+t2) |Aα|2 |Aβ|2 ×






∣∣∣∣∣∣∣

p

q

∣∣∣∣∣∣∣

2 


x2 + y2

4



 (Γ∆t)2 (28)

−


)(
p

q
) cos δKπ + *(

p

q
) sin δKπ



 k yΓ∆t

+



*(
p

q
) cos δKπ − )(

p

q
) sin δKπ



 k xΓ∆t

+k2



1 +




y2 − x2

4



 (Γ∆t)2









.
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Correlated (K−π+, K−K+) decays

The correlated decays to a CP eigenstate and a hadronic non-CP eigenstate
are somewhat more complicated. Consider, as a first example, the final state
(K−π+, K−K+). We can write

Aα = A(D0 → K−π+) Aα = keiδKπAα

Aβ = A(D0 → K−K+) Aβ = Aβ

The mixing and direct amplitudes for (K−π+, K−K+) are

X =




q

p
keiδKπ −

p

q



 AαAβ Y = (1 − keiδKπ)AαAβ

As is well-known, the time-integrated rate is dominated by the term

Y Y ∗ = (1 − 2k cos δKπ + k2)AαA∗
αAβA∗

β (29)

which depends linearly on cos δKπ.

The real and imaginary parts of the interference term are

)(XY ∗) = k



1 +

∣∣∣∣∣∣∣

q

p

∣∣∣∣∣∣∣

2






)



p

q



 cos δ − *



p

q



 sin δ



 − )



p

q



 (1 + k2) (30)

*(XY ∗) = k



1 −
∣∣∣∣∣∣∣

q

p

∣∣∣∣∣∣∣

2






*



p

q



 cos δ + )



p

q



 sin δ



 − *



p

q



 (1 + k2)
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Correlated (K−'+X, K−π+π0) decays

With the notation

A(D0 → K−π+π0) = Arζ(s12, s13) (31)

A(D
0 → K−π+π0) = Arζ(s12, s13) = keiδKππ0Arζ(s12, s13)

The (small yΓ∆t, small xΓ∆t) limit for the (K−'+X, K−π+π0) decay rate is

|M|2 =
1

4
e−Γ(t1+t2) |Ar|2 |Aβ|2 × (32)






∣∣∣∣∣∣∣

p

q

∣∣∣∣∣∣∣

2

ζ(s12, s13) ζ
∗(s12, s13)




x2 + y2

4



 (Γ∆t)2

−


)



p

q
ζ(s12, s13)ζ

∗
(s12, s13)



 cos δKππ0

+*



p

q
ζ(s12, s13)ζ

∗
(s12, s13))



 sin δKππ0



 k yΓ∆t

+



*



p

q
ζ(s12, s13)ζ

∗
(s12, s13)



 cos δKππ0

−)



p

q
ζ(s12, s13)ζ

∗
(s12, s13)



 sin δKππ0



 k xΓ∆t

+k2 ζ(s12, s13) ζ
∗
(s12, s13)



1 +




y2 − x2

4



 (Γ∆t)2









.

As a first approximation, the time-integrated rate is dominated by the doubly-
Cabibbo suppressed rate associated with Y Y ∗. To a lesser degree, the pure
mixing rate propotional to the Cabibbo favored rate, XX∗, also contributes.
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Correlated (K−K+, K−π+π0) decays

In this case, the time-integrated rate will be dominated by

Y Y ∗ = ζζ∗ + k2ζζ
∗ − 2k

[
)(ζζ

∗
) cos δKππ0 + *(ζζ

∗
) sin δKππ0

]
. (33)

The time-odd rate will depend on the real and imaginary parts of

XY ∗ = −
q

p
k2ζζ

∗ −
p

q
ζζ∗ (34)

+ k




q

p
eiδKππ0ζζ∗ +

p

q
e−iδKππ0ζζ

∗




In the limit p/q = 1,

XY ∗ → −k2ζζ
∗ − ζζ∗ + 2k

[
)(ζζ

∗
) cos δKππ0 + *(ζζ

∗
) sin δKππ0

]
(35)

which is purely real and equal in magnitude to Y Y ∗. In this limit, the time-odd
part of the rate is proportional only to yΓ∆t and is independent of x.

11



Correlated (K−π+, K−π+π0) decays

Here we will write

Aα = A(D0 → K−π+) (36)

Aα = k1e
iδ1Aα

Aβ = A(D0 → K−π+π0) = Arζ

Aβ = k2e
iδ2 Ar ζ

so that

X =




q

p
k1k2 ei(δ1+δ2) ζ −

p

q
ζ



 ArAβ (37)

Y =
(
k2 eiδ2 ζ − k1 eiδ1 ζ

)
ArAβ .

It follows that

Y Y ∗ = k2
2 ζζ

∗
+ k2

1ζζ
∗ (38)

−2 k1k2

[
)(ζζ

∗
) cos(δ1 − δ2) − *(ζζ

∗
) sin(δ1 − δ2)

]
|Aα|2 |Ar|2 ,

and as a good first approximation,

XY ∗ ≈ −
p

q

{[
k2 cos δ2 )(ζ ζ

∗
) + k2 sin δ2 *(ζ ζ

∗
) − k1 cos δ1 ζζ

∗]
(39)

+ i
[
k2 cos δ2 *(ζ ζ

∗
) − k2 sin δ2 )(ζ ζ

∗
) + k1 sin δ1 ζ ζ

∗]}
|Aα|2 |Ar|2 .
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Some Notation for D0 → K0
Sπ

−π+

At first sight, K0
Sπ

−π+, appears to be similar to K−π+π0 as both are three-body
decays whose amplitudes are often described using isobar models. However, in
the limit of no direct CP violation in D decay, and ignoring the known CP
violation in K0

S decay, we can exploit the relationship

A(D
0 → K0

Sπ
−π+)(s12, s13) = A(D0 → K0

Sπ
−π+)(s13, s12) (40)

Using the notation

A(D0 → K0
Sπ

−π+)(s13, s12) = Arζ(s12, s13) (41)

and assuming no direct CP violation, we have

Aα = Arζ(s12, s13) ; Aα = Arζ(s13, s12) (42)

It is sometimes useful to re-write ζ(s12, s13) and ζ(s13, s12) in terms of symmetric
and antisymmetric functions

ζS(s13, s12) =
1

2
[ζ(s12, s13) + ζ(s13, s12)] (43)

ζA(s13, s12) =
1

2
[ζ(s12, s13) − ζ(s13, s12)]

so that

ζ(s12, s13) = ζS(s13, s12) + ζA(s13, s12) (44)
ζ(s13, s12) = ζS(s13, s12) − ζA(s13, s12) .

Note that we can use the same notation for D0 → π0π−π+.
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Correlated (K−'+ν, K0
Sπ

−π+) decays

With the notation introduced for Aα = A(D0 → K0
Sπ

−π+),

X = −
p

q
(ζS + ζA)ArAβ (45)

Y = −(ζS − ζA)ArAβ

which gives

Y Y ∗ = (2 ζS ζ∗
S + 2 ζA ζ∗

A − ζ ζ∗) |Ar|2 |Aβ|2 (46)

XY ∗ =
p

q

[
ζS ζ∗

S − ζA ζ∗
A − 2 i *(ζS ζ∗

A)
]
|Ar|2 |Aβ|2

so that

)(XY ∗) =



)



p

q



 (ζS ζ∗
S − ζA ζ∗

A) + 2 *



p

q



 *(ζS ζ∗
A)



 |Ar|2 |Aβ|2 (47)

*(XY ∗) =



−2 )



p

q



 *(ζS ζ∗
A) + *




p

q



 (ζS ζ∗
S − ζA ζ∗

A)



 |Ar|2 |Aβ|2
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Correlated (K−K+, K0
Sπ

−π+) decays

As usual, the time integrated rate is dominated by

Y Y ∗ = 4 ζA(s12, s13)ζ
∗
A(s12, s13) |Ar|2 |A|2 (48)

which we can identify as the antisymmetric rate. Were we to consider K0
Sπ

−π+

produced in conjunction with a pure CP odd eigenstate rather than CP even,
Y Y ∗ would be the symmetric rate instead. The time-odd rates are proportional
to the real and imaginary parts of XY ∗ which is

XY ∗ = 2



 ζS ζ∗
A




p

q
−

q

p



 + ζA ζ∗
A




p

q
+

q

p







 |Ar|2 |A|2 . (49)

In the limit p = q, XY ∗ → Y Y ∗. Were we to consider K0
Sπ

−π+ produced in
conjunction with a pure CP odd eigenstate rather than CP even, XY ∗ becomes

XY ∗ = 2



 (ζS ζ∗
A)∗




p

q
−

q

p



 + ζS ζ∗
S




p

q
+

q

p







 |Ar|2 |A|2 . (50)

The roles of ζS and ζA are interchanged. If p .= q the )(ζS ζ∗
A) = )(ζS ζ∗

A)∗ but the
*(ζS ζ∗

A) = −*(ζS ζ∗
A)∗ so the time-odd asymmetries will differ and the difference

of the two as a function of position in the Dalitz plot will provide additional
sensitivity to the real and imaginary parts of p/q.
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Correlated (K−π+, K0
Sπ

−π+) decays

With the same type of notation as used earlier,

Y Y ∗ = ζ′ ζ′∗ + k2 ζ ζ∗ − 2 k )(eiδ ζ ζ′∗) (51)

= ζ′ ζ′∗ + k2 ζ ζ∗ − 2k cos δ )(ζ ζ′∗) + 2k sin δ *(ζ ζ′∗) .

We can identify the real and imaginary parts of ζ ζ′∗ with ζS and ζA writing

ζ ζ′∗ = ζS ζ∗
S − ζA ζ∗

A − 2i*(ζS ζ∗
A) (52)

from which we find

)(ζ ζ′∗) = ζS ζ∗
S − ζA ζ∗

A ; *(ζ ζ′∗) = −2*(ζS ζ∗
A) . (53)

This gives

Y Y ∗ = ζ′ ζ′∗ + k2 ζ ζ∗ − 2k cos δ (ζS ζ∗
S − ζA ζ∗

A) − 4k sin δ *(ζS ζ∗
A) . (54)

The time-odd rate is proportional to the real and imaginary parts of

XY ∗ =
q

p
k2 (ζ ζ′∗)∗ +

p

q
(ζ ζ′∗) (55)

+ k




q

p
eiδ (ζ′ ζ′∗) −

p

q
e−iδ (ζ ζ∗)





In the limit p/q → 1, these become

)(XY ∗) = (1 + k2) [ζSζ
∗
S − ζA ζ∗

A] + cos δ [ζζ∗ − k ζ′ζ′∗] (56)

*(XY ∗) = sin δ [ζ ζ∗ + k ζ′ζ′∗] − (1 − k2) *(ζSζ
∗
A)

16



Correlated (K−π+π0, K−π+π0) decays

For this correlated final state we will use the notation

Aα(s12, s13) = Arζ(s12, s13) (57)

Aα(s12, s13) = Arζ(s12, s13) = κ(s12, s13) eiε(s12,s13) Arζ(s12, s13)
Aβ(s

′
12, s′

13) = Arζ
′(s′

12, s′
13)

Aβ(s
′
12, s′

13) = Arζ
′
(s′

12, s′
13) = κ′(s′

12, s′
13) eiε(s′

12,s′
13) Arζ

′(s′
12, s′

13) .

The real functions κ, κ′, ε, and ε′ are chosen so that κ and κ′ are positive definite.

Y Y ∗ = ζ ζ∗ ζ
′
ζ

′∗
+ ζ ζ

∗
ζ′ ζ′∗ + 2)

[
(ζ ζ

∗
) (ζ

′
ζ′∗)

]
|Ar|4 . (58)

The first two terms are the products of the Cabibbo favored rate for one decay
and the doubly-Cabibbo suppressed rate for the other. The last term is the
product of two Cabibbo favored, doubly-Cabibbo suppressed interference rates.
As a good approximation, we can calculate the interference term ignoring the
doubly-Cabibbo suppressed term in X:

XY ∗ ≈
p

q

[
(ζ ζ∗) (ζ′ ζ

′∗
) − (ζ ζ

∗
) (ζ′ ζ′∗)

]
|Ar|4 . (59)

Here, each term is the product of a Cabibbo favored rate for one decay and the
interference of amplitudes for the other. Events will populate a four-dimensional
phase space corresponding to the two Dalitz plot positions (s12, s13) and (s′

12, s′
13).

Furthermore, this interference term is antisymmetric under the interchange of the
ζ and ζ′. This is evident algebraically from the form of Eqn. (59). Physically, it
corresponds to identifying one or the other Dalitz plot position as that of the first
D to decay. As the interference rate is time-odd, XY ∗ must be antisymmetric
when the two Dalitz plot positions are interchanged.
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Correlated K0
Sπ

−π+, K0
Sπ

−π+ decays

Here, we use notation here more similar to that used for K−π+π0, K−π+π0 than
for K0

Sπ
−π+, K−π+:

Aα(s12, s13) = ζ(s12, s13) Ar = (ζS + ζA) Ar (60)
Aα(s12, s13) = ζ(s13, s12) Ar = (ζS − ζA) Ar

Aβ(s
′
12, s′

13) = ζ(s′
12, s′

13) Ar = (ζ′
S + ζ′

A) Ar

Aβ(s
′
12, s′

13) = ζ(s′
13, s′

12) Ar = (ζ′
S − ζ′

A) Ar

The prime superscript (′) distinguishes the amplitudes associated with the two
Dalitz plot positions of the K0

Sπ
−π+ decays rather than the amplitudes associated

with direct D0 and D
0

decay. With this notation

Y Y ∗ = 4
{
ζAζ

∗
A ζ′

Sζ
′∗
S + ζSζ

∗
S ζ′

Aζ
′∗
A (61)

−2
[
)(ζSζ

∗
A) )(ζ′

Sζ
′∗
A) + *(ζSζ

∗
A) *(ζ′

Sζ
′∗
A)

]}

In the limit p = q, the mixing amplitude becomes

X = (ζS − ζA) (ζ′
S − ζ′

A) − (ζS + ζA) (ζ′
S + ζ′

A) (62)
= −2 [ζA ζ′

S + ζS ζ′
A]

in which case

XY ∗ = −4 (ζA ζ′
S + ζS ζ′

A) (ζ∗
A ζ′∗

S − ζSζ
′∗
A) (63)

= −4
[
ζA ζ∗

A ζ′
S ζ′∗

S − ζS ζ∗
S ζ′

A ζ′∗
A + 2 i *(ζSζ

∗
Aζ

′
Aζ

′∗
S)

]

= −4
[
ζA ζ∗

A ζ′
S ζ′∗

S − ζS ζ∗
S ζ′

A ζ′∗
A

+2 i
(
−)(ζS ζ∗

A) *(ζ′
S ζ′∗

A) + )(ζ′
S ζ′∗

A) *(ζS ζ∗
A)

) ]

18



Sensitivities - As Good As It Gets

Use a Toy Monte Carlo procedure to generate and
fit datasets

• extrapolate (roughly) from numbers of events
seen by CLEO-c to 500 fb−1

• assume we know all amplitudes and related
terms exactly: XX∗, Y Y ∗, )(XY ∗), *(XY ∗)

• assume the quadratic expansion for time-
dependence

• calculate expected numbers of events in each
(Dalitz plot bin) × (time bin) . Use 100×100 or
400 × 400 Dalitz plots. Use 18 postive time and
18 negative time bins, starting with 0.25 lifetime
width.

Additional Comments

• We assume CP symmetry

• Results are generally insensitive to Dalitz plot binning

• Results are generally insensitive to time binning

• XX∗ and Y Y ∗ can usually be extracted from time-integrated data with min-
imal assumptions

• )(XY ∗) and *(XY ∗) can probably be extracted from time-integrated data,
but it will be more difficult.
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Sensitivities

channel # of events δx δy Comments

K0
Sπ

−π+, K−e+νe 720K 0.15% 0.09% BaBar K0
Sπ

−π+ amplitudes

K0
Sπ

−π+, K−π+ 865K 0.18% 0.05% cos δKπ = 0.95

K0
Sπ

−π+, h−h+ 110K – 0.21%

K0
Sπ

−π+, K0
Sπ

−π+ 285K 0.24% 0.16%

K−π+π0, K−e+νe 4500 0.06% 0.06% cos δKππ0 = 0.95, RD = 0.16%
BaBar Kππ0 amplitudes

K−π+π0, K−π+ 5000 0.06% 0.05%
K−π+π0, K−π+π0 7200 0.07% 0.06%

K−π+π0, h−h+ 460K – 0.10%

K−π+, K−e+νe 10,600 0.27% 0.08% cos δKπ = 0.95
K−π+, h−h+ 187K – 0.16% cos δKπ = 0.95

h−h+, K−e+νe 345K – 0.12%

π−π+π0, K−e+νe 120K 0.28% 0.22% BaBar π−π+π0 amplitudes
π−π+π0, K−π+ 120K 0.56% 0.15%
π−π+π0, h−h+ 20K – 0.5%
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Mixing Summary

In the limit of no CP violation in mixing (p/q = 1),

• The formulas presented here allow one to write correlated events generators
for the modes studied. These almost certainly include most of the important
modes for studying mixing and CP violation in mixing (i.e., p/q .= 1). This
allows one to determine efficiency and ∆t resolutions for possible machine and
detector configurations (βγ, B-field strength, etc.).

• The rates associated with direct decays can be extracted from data indepen-
dently of models using time-integrated measurements. Mixing perturbs these
determinations at the 10−4 level if one integrates over all decay times, and
even less if one integrates over limited ranges of ∆t.

• Relative (strong interaction) phases between Cabibbo favored and doubly-
Cabibbo suppressed decays to the same final states can be extracted from
time-integrated measurements.

• The interference rate terms can generally be extracted from data indepen-
dently of models using a multiplicity of time-integrated measurements, if rel-
ative strong phases are kind to us. If not, a multiplicity of time-dependent
measurements allows these rates as well as the mixing parameters to be ex-
tracted with no need for a model.

• The formalism for K0
Lπ

−π+ decays is the same as that for K0
Sπ

−π+, and the
statistics will be greater for most correlated channels.

• The formalism for K+π+π−π− is the same as that for K+π−π0 except that
the phase space is 5-dimensional rather than 2-dimensional. This makes ex-
trapolating the amplitudes more difficult.
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CPV in Time Asymmetric Rates

The time asymmetric part of the correlated rate depends on

X =
q

p
AαAβ −

p

q
AαAβ ; Y = AαAβ − AαAβ (64)

through

4|M|2 = e−Γ(t1+t2) ×




XX∗




(x2 + y2)

4
(Γ∆t)2



 (65)

− )(XY ∗) yΓ∆t + *(XY ∗) xΓ∆t

+ Y Y ∗


1 +
(y2 − x2)

4
(Γ∆t)2










In the limit of no direct CPV, Aα → Aα; Aβ → Aβ and q/p → p/q when

we interchange D0 and D
0
. This leads to CPV in the time-odd rate propor-

tional to the real and imaginary parts of XY ∗. As an example, recall that for
(K−π+, K−π+π0),

XY ∗ ≈ −
p

q

{[
k2 cos δ2 )(ζ ζ

∗
) + k2 sin δ2 *(ζ ζ

∗
) − k1 cos δ1 ζζ

∗]
(66)

+ i
[
k2 cos δ2 *(ζ ζ

∗
) − k2 sin δ2 )(ζ ζ

∗
) + k1 sin δ1 ζ ζ

∗]}
|Aα|2 |Ar|2 .
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Time-Odd CPV Sensitivities

channel (x = 0.3%, y = 0.8%) (x = 1.2%, y = 3.2%))

δx δy δ(|q/p|) δφ δx δy δ(|q/p|) δφ

K0
Sπ

0π+, K−e+ν 0.11 % 0.11% 0.11 0.12 0.13% 0.11 % 0.028 0.036

K0
Sπ

−π+, h−h+ – 0.21% 0.20 0.14 – 0.22% 0.065 0.100

K0
Sπ

−π+, K−π+ 0.11% 0.10% 0.11 0.11 0.13 % 0.10% 0.031 0.030

π−π+π0, K−e+ν 0.34% 0.26% 0.20 0.13 0.37% 0.24% 0.069 0.100

π−π+π0, h+h− – 0.42% 0.27 0.11 – 0.47% 0.159 0.099

π−π+π−, K−π+ 0.35% 0.26% 0.19 0.14 0.32% 0.23% 0.063 0.091

Some observations:

• δx and δy sensitivities somewhat worse when allowing for CPV;

• δx and δy sensitivities independent of central values;

• δx and δy sensitivities scale like 1/
√

n;

• δ|q/p| and δφ sensitivities depend on central values of x and y;

• δ|q/p| and δφ sensitivities scale like 1/
√

n.
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Final Thoughts

Some final thoughts on running at threshold:

• XX∗ and Y Y ∗ can be extracted from time-integrated measurements with no
model dependence.

• )(XY ∗) and *(XY ∗) can be extractd from time-integrated measuerments
with little (or no) model dependence (if nature is kind.

• time-integrated measurements of XX∗, Y Y ∗, )(XY ∗), and *(XY ∗) can be
useful for tagged mixing and CPV studies [can eliminate, or strongly reduce,
model dependencies]. This is especially true for WS channels like D0 →
K+π−π0.

• K0
Lπ

−π+ and K+π+π−π− are potentially power channels in correlated decays
at threshold.

• 500 fb−1 at threshold has less physics reach for charm mixing and CPV than
does 75 ab−1 at the Υ(4S).

• 5 ab−1 at threshold has more physics reach for charm mixing and CPV than
does 75 ab−1 at the Υ(4S).
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