Relevance of $D^0 \overline{D}^0$ threshold data for mixing and CPV measurements

Nicola Neri INFN - Sezione di Milano on behalf of the SuperB Collaboration

Workshop on Charm Physics at threshold IHEP, Beijing 21-23 October 2011

Outline

- Introduction
- Mixing and CP violation measurements at the B Factories
- Sensitivity projections at SuperB
 - with 75 ab^{-1} of data at $\Upsilon(4S)$
 - with additional 500 fb⁻¹ of $\psi(3770)$ data
- Possible approaches for improving sensitivity on mixing and CPV using threshold data:
 - model independent approaches
 - time-dependent measurements at threshold
- Summary

Introduction

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

3

Flavor mixing occurs when flavor eigenstates differ from mass eigenstates: well established phenomena in neutral K, B_d, B_s systems.

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle \qquad |q|^2 + |p|^2 = 1$$

Mixing parameters are expressed in terms of *x*, *y* parameters, proportional to the mass and decay width differences of the mass eigenstates:

$$x=rac{m_1-m_2}{\Gamma};\;\;y=rac{\Gamma_1-\Gamma_2}{2\Gamma}$$
 , where $\;\Gamma=rac{\Gamma_1+\Gamma_2}{2}$

21 Oct 2011

 $\rangle = \overline{A}_f$

 $\langle f|H|\overline{D}^0$

Λ

Three types of CP violation

I. in the decay (direct):

$$\left(\frac{\overline{A}_{\overline{f}}}{\overline{A}_{f}} \right| \neq 1) \implies \mathsf{CPV}$$

2. in mixing (indirect):

$$r_m = \boxed{\frac{q}{p} \neq 1} \implies \mathsf{CPV}$$

3. in the interference between mixing and decay:

INFN

Standard Model predictions

- Short-distance contributions |ΔF_{charm}=2| from mixing box diagrams in the Standard Model are expected to be small :
- b quark is CKM-suppressed;
- s and d quarks are GIM suppressed;
- Long-distance contributions (via $|\Delta F_{charm} = I|$ interactions) expected to dominate, still small effect, hard to estimate precisely.

b, s, d

 $\bar{b}, \bar{s}, \bar{d}$

b, s, d

7

Super-B meeting, LNF, Sept. 2010

Which are the sources of flavour symmetry breaking accessible at low energies?

imits from CPV $n D^0 mixing$ $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \Sigma \frac{c_{ij}}{\Lambda^2} O_{ij}^{(6)}$ Isidori, Nir & GP, Ann. Rev. Nucl. Part						
	Bounds on Λ (TeV) Bou		Bounds on c _{ij}	ounds on c_{ij} ($\Lambda = 1$ TeV)		
Operator	Re	Im	Re	Im	Observables	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \varepsilon_K$	
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \varepsilon_K$	
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$	
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^{2}	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{B_d \to \psi K}$	
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{B_d \to \psi K}$	
$(\bar{b}_L \gamma^{\mu} s_L)^2$	1.1×10^2	1.1×10^{2}	7.6×10^{-5}	7.6×10^{-5}	Δm_{B_s}	
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	3.7×10^2	1.3×10^{-5}	1.3×10^{-5}	Δm_{B_s}	

New flavor-breaking sources of O(1) at the TeV scale are definitely excluded

Nicola Neri - Relevance of $D\overline{D}$ threshold data for mixing and CPV measurements

21 Oct 2011

Mixing and CPV analyses at the B Factories

Time-dependent analyses

 $D^{0} \rightarrow K^{+}\pi^{-}$ $D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ $D^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$ $D^{0} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}$ $D^{0} \rightarrow K^{0}_{S}K^{+}K^{-}$ $D^{0} \rightarrow K^{0}_{S}\phi$

9

Note:

Mixing (x',y') and CPV

Mixing (y_{CP}) and CPV

Dalitz plot analysis. Mixing (x",y") and CPV

Dalitz plot analyses. Mixing (x,y) and indirect CPV $(|q/p|, \varphi)$

Mixing (ycp)

In time-dependent analyses we can distinguish the three different contributions to CP violation: decay, mixing and interference between mixing and decay.

 \mathcal{B}

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

INFN Time-integrated analyses

$D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

 $D^0 \rightarrow \pi^+ \pi^- \pi^0$

 $D^0 \to K^{(*)} l \nu$

 $D^0 \rightarrow K^+ K^- \pi^0$

 $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

 $D^0 \rightarrow K^0_S \pi^0, K^0_S \eta, K^0_S \eta'$

 $D^0 \to K^+ \pi^- \pi^0, K^+ \pi^- \pi^+ \pi^-$

 \mathcal{B}

BELLE

 \mathcal{B}

Note:

Search for CPV

Search for CPV (phase space integrated and in Dalitz plot regions)

Search for CPV

Search for CP violation using T-odd correlations (assuming CPT conserved)

Search for CPV

Search for CPV

Mixing (x^2+y^2)

In time-integrated analyses we cannot trivially distinguish among the three different contributions to CP violation

INFN

Mixing and CPV measurements at B factories

- Here I will report only few examples among the most significant measurements for mixing and CP violation performed at BaBar:
 - ► $D^0 \rightarrow K^+\pi$ WS <u>Pro</u>: in wrong sign (WS) decays the effect of mixing is a relatively large effect, evidence for mixing at 3.9 σ level. <u>Cons</u>: not possible to determine the mixing parameters x, y without external input for $\delta_{K\pi}$;
 - ► $D^0 \rightarrow K_S \pi^+ \pi_{,} K_S K^+ K^-$ <u>Pro:</u> direct measurement of x and y. <u>Cons:</u> Dalitz model dependent approach. Assumptions: CP conservation in the decay, neglecting CP violation in the $K^0 \bar{K}^0$ mixing;
 - ► $D^0 \rightarrow K^+ \pi \pi^0$ WS <u>Pro</u>: evidence for mixing at 3.2 σ level. <u>Cons</u>: Dalitz model dependent approach, not possible to determine the mixing parameters x, y directly.

At SuperB we should aim for model independent measurement without any CP conservation assumption.

First evidence for $D^0-\overline{D}^0$ mixing in wrong sign $D^0\rightarrow K^+\pi^-$ decays

Phys. Rev. Lett. 98:211802,2007 (384 fb⁻¹)

• Wrong Sign (WS) final states from 2 sources: via double-Cabibbo-suppressed (DCS) decays or via mixing followed by Cabibbo-favored (CF) decays.

Analysis of the proper time distribution of WS events permits extraction of D^0 mixing parameters y', x'².

21 Oct 2011

Nicola Neri - Relevance of $D\overline{D}$ threshold data for mixing and CPV measurements

WS time fit: evidence of mixing at 3.9σ

Results from different fits

Fit type	Parameter	Fit Results $(/10^{-3})$
No CP viol. or mixing	$R_{ m D}$	$3.53 \pm 0.08 \pm 0.04$
No CP	R_{D}	$3.03 \pm 0.16 \pm 0.10$
violation	x'^2	$-0.22 \pm 0.30 \pm 0.21$
	y'	$9.7 \pm 4.4 \pm 3.1$
	$R_{\rm D}$	$3.03 \pm 0.16 \pm 0.10$
CP	$(A_{\rm D})$	$-21 \pm 52 \pm 15$
violation	x'^{2+}	$-0.24 \pm 0.43 \pm 0.30$
allowed	y'^+	$9.8 \pm 6.4 \pm 4.5$
	x'^{2-}	$-0.20 \pm 0.41 \pm 0.29$
	y'^-	$9.6 \pm 6.1 \pm 4.3$

Fit separately $D^0(+)$ and $\overline{D}^0(-)$:

$$T_{\rm WS}^{\pm}(t) = e^{-\Gamma t} \left(R_{\rm D}^{\pm} + \sqrt{R_{\rm D}^{\pm}} y^{\prime \pm} \Gamma t + \frac{x^{\prime \pm 2} + y^{\prime \pm 2}}{4} (\Gamma t)^2 \right)$$
$$A_{\rm D} = \frac{R_{\rm D}^{\pm} - R_{\rm D}^{\pm}}{R_{\rm D}^{\pm} + R_{\rm D}^{\pm}} \qquad R_{\rm D} = \sqrt{R_{\rm D}^{\pm} R_{\rm D}^{\pm}}$$

Sensitive to CP violation in mixing and decay. No evidence for CP violation was found. Study event distribution as a function of Dalitz plot position and time

$$\frac{dN_f(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} \propto e^{-\Gamma t} \left\{ |A_f|^2 + \left[y \underbrace{\operatorname{Re}(A_f^* \bar{A}_f)}_{\bullet} - x \underbrace{\operatorname{Im}(A_f^* \bar{A}_f)}_{\bullet} \right] (\Gamma t) + \frac{x^2 + y^2}{4} (\Gamma t)^2 |\bar{A}_f|^2 \right\}$$

Model dependent approach. Requires parameterization of the D^0 decay amplitude in the Dalitz plot.

$$A_f = A(s_{12}, s_{13})$$
 $\bar{A}_f = \bar{A}(s_{12}, s_{13})$ and $(s_{12}, s_{13}) = \text{Dalitz plot location}$

- if f and \overline{f} belong to the same Dalitz plot (e.g. $K_S^0 \pi^+ \pi^-$) by assuming CP conservation in decay $(\overline{A}_f = A_{\overline{f}})$ is possible to extract directly x, y mixing parameters, without $D^0 - \overline{D}^0$ relative strong phase uncertainty.

Method pioneered by CLEO Collaboration: D.Asner et. al. Phys. Rev. D72:012001,2005.

 $\delta_{K\pi\pi^0} = \arg\left(\frac{A(D^0 \to K^+ \rho^-)}{A(\overline{D}^0 \to K^+ \rho^-)}\right)$

- if f and \overline{f} do not belong to the same Dalitz plot (e.g $K^+\pi^-\pi^0$) the relative strong phase is not directly measurable at B Factories and we can extract effective mixing parameters, as for example:

$$x'' = x\cos\delta_{K\pi\pi^0} + y\sin\delta_{K\pi\pi^0} \qquad y'' = -x\sin\delta_{K\pi\pi^0} + y\cos\delta_{K\pi\pi^0}$$

Method pioneered by BaBar Collaboration: Phys.Rev.Lett.103:211801,2009

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

$\int D^{0}(t) \rightarrow K^{+}\pi^{-}\pi^{0}$ (WS) mixing fit

Phys. Rev. Lett. 103:211801,2009 (384 fb⁻¹)

The WS time-evolution function contains both DCS (A_f) and CF amplitudes (\bar{A}_f) . The CF amplitudes are determined in a time-independent Dalitz plot fit to the RS sample (~660K evt) and fixed in the WS time-dependent Dalitz plot mixing fit (~3000 evt).

Dalitz plot model:

DCS=Doubly Cabibbo Suppressed WS = Wrong Sign, $D^0 \rightarrow K^+\pi^-\pi^0$

CF = Cabibbo FavoredRS = Right Sign, D⁰ \rightarrow K⁻ $\pi^+\pi^0$

Use Breit-Wigner functions for DCS and CF D^0 decay amplitudes. $K\pi$ S-wave amplitude use BW together with effective range non-resonant component.

$D^{0}(t) \rightarrow K^{+}\pi^{-}\pi^{0}$ (WS): systematic errors

Syst.	x''/r_0	y''/r_0
Dalitz model	0.338	0.472
t resolution function	0.259	0.0621
Background model	0.55	0.464
Signal and Background yields	0.168	0.0132
Dalitz plot efficiency	0.0876	0.0794
Selection	0.391	0.287
Total	0.858	0.745

Dalitz plot model and background model uncertainties represent the most relevant systematic errors for mixing parameters at B factories.

• Select $D^{*+} \rightarrow D^0 \pi^+$ events with high purity

K_sπ⁺π⁻

 N_{sig} = (540.8±0.8)×10³ Purity= 98.5%

```
K<sub>s</sub>K⁺K⁻
```

 N_{sig} = (79.9±0.3)×10³ Purity= 99.2%

Mixing time-dependent Dalitz plot fit

D⁰ decay amplitude phenomenological parameterization:

-for P- and D-wave amplitudes use Breit-Wigner (BW) model $-\pi^+\pi^-$ S-wave dynamics use K-matrix formalism *K.V. Anisovich, A. V. Sarantsev, Eur. Phys. J. A* 16 (2003) 229 -K π S-wave amplitude use BW with coherent non-resonant contribution *D. Aston K*+K⁻ S-wave use a coupled-channel BW for the a₀(980) contribution.

K_Sπ⁺π⁻. DCS: K^{*}(892)⁺, K^{*}₀(1430)⁺, K^{*}₂(1430)⁺. CP eigenstates: K_Sρ⁰ (CP=-1) K_SK⁺K⁻. CP eigenstates: K_S ϕ (CP=-1), K_Sa₀(980) (CP=+1).

D. Aston et al., Nucl. Phys. B 296, 493 (1988); W. Dunwoodie, private communication.

Mixing fit results

Experimental systematics

Source	x[%]	y[%]
SVT misalignment	0.0279	0.0826
Fit bias	0.0745	0.0662
Charge-flavor correlation (mistagging)	0.0487	0.0398
Event selection	0.0395	0.0508
Efficiency map	0.0367	0.0175
Background Dalitz-plot distribution	0.0331	0.0142
D^0 mass window	0.0250	0.0250
Proper lifetime PDF	0.0134	0.0128
Signal and background yields	0.0109	0.0069
Mixing in background	0.0103	0.0082
Dalitz-plot normalization	0.0106	0.0053
Proper lifetime error PDF	0.0058	0.0087
Experimental systematics	0.1177	0.1302

D⁰ decay amplitude model systematics

 Dominated by uncertainty on K*(892), K-matrix,
 0.0678
 0.0532

 Kπ Lass parameters
 0.0830
 0.0685

 Total
 0.0830
 0.0685

Combined $K_{S}\pi^{+}\pi^{-} + K_{S}K^{+}K^{-}$ fit results assuming CP conservation: $x = [0.16 \pm 0.23(\text{stat.}) \pm 0.12(\text{syst.}) \pm 0.08(\text{model})]\%$ $y = [0.57 \pm 0.20(\text{stat.}) \pm 0.13(\text{syst.}) \pm 0.07(\text{model})]\%$

Nicola Neri - Relevance of $D\overline{D}$ threshold data for mixing and CPV measurements

Mixing and CPV: sensitivity projections at SuperB

Based on material found in the SuperB Progress Report: Physics arXiv:1008.1541v1 (August 2010)

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

Sensitivity projections for mixing

- ✓ Realistic estimates using BaBar's results with 482 fb⁻¹ of data at Y(4S) and projecting to 75 ab⁻¹.
- ✓ Statistical error scales as $\sqrt{\text{integrated luminosity}}$
- \checkmark Same for systematic errors:
 - mostly determined directly from data and control samples.
 - Except for:

 $D^{0} \rightarrow K_{s}\pi^{+}\pi^{-}$ analysis has "irreducible" uncertainty in x_{D} and in y_{D} of order 1 x 10⁻³ due to uncertainty in <u>Dalitz model</u>.

23

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

INFI Using $D\overline{D}$ threshold data

- \checkmark Data taken at $D\bar{D}$ threshold provide measurements of strong phases $\delta_{\kappa\pi}$ and $\delta_{\kappa\pi\pi0}$.
- \checkmark Also provide measurement of δ as a function of Dalitz plot position:
 - this can be used to significantly reduce the Dalitz model uncertainties for the three-body decay modes Ksh⁺h⁻.
- \checkmark As a basis for projection, we take results from CLEO-c:

-N. Lowrey et al, PRD80, 031105 (2009), 0903.4853

-D. M.Asner et al., Phys. Rev. D78, 012001 (2008), 0802.2268.

- \checkmark We assume that <u>new data</u> from threshold will reduce the uncertainties in model uncertainty:
 - <u>BES III</u> ~factor 3 improvement in model uncertainty
 - <u>Super B 500 fb⁻¹ $D\overline{D}$ threshold run ~factor 10 improvement.</u>

Possible approaches for improving sensitivity on mixing and CPV using threshold data

Model independent approach for 3-body decays

A. Bondar, A. Poluektov, V. Vorobiev have proposed a model independent analysis of 3-body D⁰ decays for mixing and CPV. See Phys. Rev. D 82, 034033 (2010)

Sensitivity relies on the variation of the yields in different regions of the Dalitz plot along the time. No amplitude analysis is required.

$$\frac{d\Gamma_{i}[D_{\text{phys}}^{0} \to f]/dt}{e^{-\Gamma t}\mathcal{N}_{f}} = \left[\left(T_{i} + |\frac{q}{p}|^{2}\bar{T}_{i}\right)\cosh(\Gamma yt) + \left(T_{i} - |\frac{q}{p}|^{2}\bar{T}_{i}\right)\cos(\Gamma xt) \right]$$
Time dependence for
flavor tagged decays
(i.e. D* tagged at Y(4S))
$$+ 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi - s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right)\sinh(\Gamma yt)$$

$$- 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\sin(\Gamma xt)\right]$$

Determination of Dalitz plot parameters: T_i, c_i, s_i

- c_i, s_i determination requires DD coherent production. The method has been proved to work well by CLEO-c. See Phys. Rev. D 82, 112006 (2010).
- c_i, s_i from time integrated analysis of $\Psi(3770)$ data is affected by $\mathcal{O}(x^2, y^2)$ approximations (relatively small).
- c_i, s_i extraction: no CP conservation assumption required if doubling number of bins in the Dalitz plot.

28

the $i^{\rm th}$ bin is defined by the condition

 $2\pi(i-3/2)/\mathcal{N} < \Delta \delta_D(m_+^2, m_-^2) < 2\pi(i-1/2)/\mathcal{N},$

- T_i, \overline{T}_i can be measured at $\Psi(3770)$ with a time-integrated analysis and then fixed in the time-dependent mixing analysis at the $\Upsilon(4S)$.
- T_i, T_i can also be determined simultaneously in the time-dependent mixing analysis at the Y(4S) if helpful for reducing systematic errors (different efficiencies, resolutions, etc.)

Sensitivity results for mixing and CPV parameters for $D^0 \rightarrow K_S \pi^+ \pi^-$

- Sensitivity studies for mixing and CPV with model independent approach. From Phys.Rev.D82, 034033 (2010):
 - assume perfect proper time resolution and no bkg;
 - ▶ assume very precise determination of c_i , s_i (considering 2×10^6 flavor tagged $D^0 \rightarrow K_S \pi^+\pi^-$ decays at $\Psi(3770)$).

TABLE II: Statistical sensitivity to the mixing and CP violation parameters for the time-dependent Dalitz plot analysis. Two strategies are considered: (i) T_i fixed from charm factory data and (ii) T_i taken as free parameters.

Parameter	Precision		Precision		
	T_i fixed	T_i floated	T_i fixed	T_i floated	
$x_D (10^{-4})$	17	22	2.0	2.5	
$y_D \ (10^{-4})$	13	16	1.5	1.8	
$ q/p (10^{-2}) $	9	9	1.0	1.0	
arphi (°)	5	5	0.6	0.6	

B Factories	SuperB		
1M signal events	75 M si		

75 M signal events

Similar approach is valid also for $D^0 \rightarrow K^+\pi^-\pi^0$. Using a model independent approach is possible to extract mixing parameters x, y directly also in this case.

Time-dependent measurements at DD threshold: preamble

- SuperB will have the possibility to operate with energy asymmetric beams also at the $\Psi(3770)$ allowing time-dependent measurement of $D\overline{D}$ quantum coherent pairs.
- This is a unique feature of the SuperB machine to be studied and possibly exploited:
 - additional tag states (e.g. CP tag), other than flavor eigenstates, will be available at threshold thanks to the quantum coherence;
 - ▶ background free time-dependent measurements (e.g. $D^0 \rightarrow K^+\pi^-\pi^0$)
 - access to the mixing and CP violation parameters along with relative D⁰ D
 ⁰ relative phases from the same data;
 - possibility of time-dependent CPT tests exploiting using quantum coherence as for the Kaon and B meson systems;
 - Possibility to double check a possible discovery of CP violation in the charm sector in different energy regimes and experimental environments with different systematic errors.

Time-dependent measurements at DD threshold: general considerations

• At Y(4S)

- ≻ Flavor tagged D⁰ through $D^{*+} \rightarrow D^0 \pi^+$ decay. Flavor mistag ≈ 0.2%
- > We denote the D* flavor tag with label IX
- ► D⁰ can be reconstructed in flavor lX, CP, $K\pi$ and multibody (e.g. $Ks\pi\pi$) final states. Relatively high purity due to m(D⁰) and $\Delta m=m(D^{*+})-m(D^{0})$
- \succ Proper time resolution is about $\tau(D^0)/4\approx 0.1~ps$

• At $\psi(3770)$

- ▶ Coherent $D^0\overline{D}^0$ production
- Both D mesons can be reconstructed in *l*X, CP, Kπ and Ksππ final states, with very low background
- Flavor mistag ≈ 0.2% with eX, but ≈ 2% with µX (large µ misid @ low p)
- > Time-dependent measurements

Double tags @ $\Psi(3770)$ Modes with D* tag @ $\Upsilon(4S)$

	CP-	Κπ	lX	Κsππ
CP+	Х	Х	XX	Х
CP-		Х	XX	Х
Κπ		Х	XX	Х
lΧ			XX	XX
Κsππ				Х

require larger CM boost compared to the $\Upsilon(4S)$ case to achieve time resolution, but reconstruction efficiency decreases with large CM boost. Need to determine the optimal boost value.

Time-dependent measurements at D threshold: to do list See Matteo Rama's talk.

- Consider for the time being 500 fb⁻¹ of $\psi(3770)$ data at SuperB;
 - Determine adequate center of mass boost value for time-dependent studies at $\Psi(3770)$ and detector specifications/configuration (e.g. magnetic field value, inner layer silicon detector technology, IP position);

2-body decays:

- Nork in Progress study sensitivity for mixing and CPV parameters exploiting quantum coherence and with additional CP tagged D^0 decays;
- compare sensitivities of time-dependent vs time-integrated measurements:

3-body decays:

- determination of c_i, s_i at SuperB. Sensitivity projections and systematic errors;
- Time-dependent (Dalitz model independent) measurement of mixing and CPV at $\Psi(3770)$ and at $\Upsilon(4S)$.

Summary

- Charm physics provides a unique opportunity to search for New Physics at SuperB.
- Precision measurements for mixing and CPV would benefit of $D^0\overline{D}^0$ threshold data for improving sensitivities and reducing systematic errors.
- Expected sensitivities at SuperB including threshold data: ▶error on x, y at 10⁻⁴ level
 - For on |q/p| at 10⁻² level, error on φ at 1 degree level.
- Time-dependent measurements at threshold are a unique feature of SuperB that we are currently studying.

Backup slides

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

Selection of RS and WS decays

RS = Right Sign WS = Wrong Sign

INFN

RS decay time, signal region Data 10⁵ Good RS Signal \checkmark D⁰ lifetime and resolution Idea Events/0.1 ps ₀01 Random π. Combinatoric function fitted in RS sample 10² $\tau = (410.3 \pm 0.6 (\text{stat.})) \text{ fs}$ 5 Consistent with PDG Pull (410.1±1.5 fs) -5 3 n 2 л t (ps)

Signal resolution function described by sum of 3 Gaussians (core, tail, outliers):

- Mean of Gaussian allowed to be non-zero (Small vertex detector misalignment);
- Use per-event-error for all 3 Gaussian components

Rate of WS events clearly increases with time

Nicola Neri - Relevance of DD threshold data for mixing and CPV measurements 21 Oct 2011

