$D \rightarrow K \pi \ell \nu$ as a probe of low-energy QCD

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

in collaboration with J. Charles, X.W. Kang, H.B. Li

Charm at threshold workshop Beijing, Oct 22 2011

Semileptonic decays

- Great probes of low-energy QCD
- $D \rightarrow \pi \ell \nu$, $D \rightarrow K \ell \nu$: extraction of $|V_{cd}|$, $|V_{cs}|$ together with lattice
- But other modes also interesting...

 $D \to K \pi \ell \nu$

- Dominated by $D \rightarrow K^*(892)\ell\nu$, with several form factors to be compared with lattice/hadronic models
- Final-state interaction probes $K\pi$ scattering in *S*, *P* and *D* waves...
- ... related to corresponding resonances ($\kappa(800), K^*(892)...$)
- More generally, valuable information on low-energy QCD dynamics

Low-energy QCD and light quarks

QCD at low energies

- Spectrum degeneracies: isospin multiplets, octets and decuplets...
- Significant differences between opposite parity channels

Mass gap: pseudoscalar mesons (π, K, η) lighter than others
 SU(3) flavour symmetry + spontaneous breakdown of a symmetry

D_{ℓ4} and low-energy QCD

QCD and chiral symmetry

Project over left- and right-handed chiralities $q_{L,R} = \frac{1 \mp \gamma_5}{2} q$

$$\mathcal{L}_q = \sum_q ar{q}_L i \partial q_L + ar{q}_R i \partial q_R - m_q (ar{q}_L q_R + ar{q}_R q_L)$$

In chiral limit $m_{u,d...} \rightarrow 0$, \mathcal{L}_q inv. under $SU(N_f)$ rotations

$$\Psi = \begin{pmatrix} u \\ d \\ \vdots \end{pmatrix} \qquad \begin{array}{c} \Psi_L \rightarrow V_L \Psi_L \\ \Psi_R \rightarrow V_R \Psi_R \end{array}$$

Spontaneous breaking: $SU_L(N_f) \times SU_R(N_f) \rightarrow SU_V(N_f)$

Goldstone Theorem

 $N_f^2 - 1$ massless bosons whose interactions vanish as $E \rightarrow 0$

 \Rightarrow Light pseudoscalar mesons (for $m_q \neq 0$)

Two chiral limits of interest

Two a-priori different patterns of chiral symmetry breaking

$$m_u, m_d \rightarrow 0$$

$$N_f = 3$$
 : $m_s \rightarrow 0$
 $N_f = 2$: m_s physical

Two low-energy effective theories of QCD

 $N_f = 2$: π only d.o.f. (very low *E*, few param. & processes) $N_f = 3$: π, K, η d.o.f. (higher *E*, more param. & processes)

Chiral Perturbation Theory (χ PT): expansion in powers of m_q and p

$\chi {\rm PT}$ and lattice

 χ PT : structure of π or π, K, η interactions but not values of couplings

Symbiotic relation with lattice

- Light masses for χPT , but unknown constants
- Heavier masses for lattice (especially for $m_{u,d}$), but extrapolation

Impact of *chiral logarithms* on extrapolation

$$M_{\pi}^2 \log rac{M_{\pi}^2}{\mu^2}$$

Good understanding of pattern(s) of chiral symmetry breaking needed for accurate determination of form factors (e.g., $K \rightarrow \pi \ell \nu$ for $|V_{us}|$)

 \implies Useful to determine chiral symmetry breaking from $\pi\pi$ and πK scatterings

$\pi\pi$ scattering

$\pi\pi$ experimental information

 $\pi\pi$ (re)scattering projected onto partial waves of definite isospin t_{ℓ}^{\prime} described via partial-wave phase shifts δ_{ℓ}^{\prime} and inelasticity η_{ℓ}^{\prime}

$$t'_{\ell}(s) = \frac{1}{2i\sigma(s)} \left\{ \eta'_{\ell}(s) \, e^{2i\delta'_{\ell}(s)} - 1 \right\} \, . \qquad \sigma(s) = \sqrt{1 - \frac{4M_{\pi}^2}{s}}$$

Parametrisation in terms of scattering lengths a_l^{ℓ}

$$\mathsf{Re}\,t'_\ell(s) = q^{2\ell}\,\{a'_\ell + q^2\,b'_\ell + q^4\,c'_\ell + \ldots\} \qquad s = 4(\mathit{M}^2_\pi + q^2)$$

Constraints from

- Pion production on nucleon
- $\mathcal{K}^+ \to \pi^+ \pi^0 \pi^0$ cusp related to $\pi^+ \pi^- \to \pi^0 \pi^0$ (re)scattering

N.Cabibbo, G.Isidori; G.Colangelo et al.; NA48/2

Pionium lifetime
 DIRAC

•
$$K \to \pi \pi \ell \nu$$
 decays NA48/2

$K \rightarrow \pi \pi \ell \nu$: *S*-*P* interference

 $K_{\ell 4}$ dominated by *S* and *P* waves, with interference: $\delta_0^0 - \delta_1^1$ for $4M_{\pi}^2 \le s \le M_K^2$ very clean probe of $\pi\pi$ scattering thanks to Watson theorem

- For a long time, only "highstatistics" Geneva-Saclay exp.
- 2000 : E865 (Brookhaven)
- 2007-2010 : NA48/2 dominating the sample $(K^{\pm} \rightarrow \pi^{+}\pi^{-}\ell^{\pm}\nu)$
- At such accuracy, isospin breaking matters: experiment includes real & virtual photons (Coulomb corrections, Photos), but not $M_{\pi^+} \neq M_{\pi^0}$
- Corrections to Watson theorem before extracting information on N_f = 2 chiral symmetry breaking

G. Colangelo, J. Gasser and A. Rusetski; V. Bernard, SDG and M. Knecht

Results before and after NA48/2

- Dispersive constraints (Roy equations): amplitudes in terms of (a₀⁰, a₀²)
- (a_0^0, a_0^2) extracted from $\delta_0^0 \delta_1^1$ measured in $K_{\ell 4}$
 - adding theoretical information on pion scalar radius (Scalar)
 - or experimental info on $I = 2, \ell = 0$ channel (Extended)
 - or including info on $I = 2, \ell = 0$ channel and $K \rightarrow 3\pi$ cusp (All)

- Sharpening constraints once NA48/2 included (thin → thick ellipses)
- Good agreement with NNLO prediction from χ PT with pions only
- $N_f = 2$ quark condensate $\langle 0|\bar{u}u|0\rangle$ dominating $\pi\pi$ interactions

What about πK scatt. ?

πK scattering

πK theoretical description

(Dispersive) Roy-Steiner eqs. yield low-energy phase shifts for πK scattering from higher-energy data in terms of two subtraction constants

$$(a_0^{1/2}, a_0^{3/2}) \ {
m Im} \ t \ {
m for} \ s_0 \le s \le s_2 \ {
m in} \ {
m for} \ s_{
m th} \le s \le s_0$$

P. Büttiker, SDG and B. Moussallam

• High-*E* data [$s \ge (0.97 \text{ GeV})^2$] already constrain low-*E* πK scattering

ł

- But more efficient to combine dispersive contraints with both high- and low-*E* data to constrain structure of $N_f = 3$ chiral symmetry breaking
- ... limiting impact of high-energy data or theoretical assumptions

πK theoretical constraints

πK experimental information

- $Kp \rightarrow K\pi N$ interaction, but higher-*E* [Estabrooks et al, LASS]
- $\tau \rightarrow K \pi \nu_{\tau}$, but almost *P*-wave only [Babar, Belle]
- $D \rightarrow K \pi \pi$, but hadronic rescattering from 3rd meson
- $D \to K \pi \ell \nu$
 - First studied at FOCUS & CLEO
 - Significant S-P-wave interference visible in angular asymmetries
 - Possibility to measure it, exactly like in the case of $K \to \pi \pi \ell \nu$

$D \rightarrow K \pi \ell \nu$ kinematics

 $D \rightarrow K \pi \ell \nu$ described by 5 kinematic parameters (3 angles and 2 invariant masses)

 $\mathrm{d}^{5}\Gamma \propto \left| V_{cs} \right|^{2} \mathcal{I}(m^{2},q^{2},\theta_{K},\theta_{e},\chi) \mathrm{d}m^{2} \mathrm{d}q^{2} \mathrm{d}\cos\left(\theta_{K}\right) \mathrm{d}\cos\left(\theta_{e}\right) \mathrm{d}\chi$

3 form factors from hadronic matrix element in $\ensuremath{\mathcal{I}}$

- \mathcal{F}_1 (*S*,*P*... waves), et $\mathcal{F}_{2,3}$ (*P*... waves) depending on $s_{K\pi}$, $s_{\ell\nu}$ and $\cos \theta_K$
- Partial-wave phases identical to πK scattering (Watson theorem)
- At low energy, dominated by I = 1/2 S- and P-waves

Interference terms

 $\mathcal{I} = \mathcal{I}_1 + \mathcal{I}_2 \cos 2\theta_e + \mathcal{I}_3 \sin^2 \theta_e \cos 2\chi + \mathcal{I}_4 \sin 2\theta_e \cos \chi + \mathcal{I}_5 \sin \theta_e \cos \chi + \mathcal{I}_6 \cos \theta_e + \mathcal{I}_7 \sin \theta_e \sin \chi + \mathcal{I}_8 \sin 2\theta_e \sin \chi + \mathcal{I}_9 \sin^2 \theta_e \sin 2\chi$

$$\begin{split} \mathcal{I}_{1} &= \frac{1}{4} \left\{ |\mathcal{F}_{1}|^{2} + \frac{3}{2} \sin^{2} \theta_{K} \left(|\mathcal{F}_{2}|^{2} + |\mathcal{F}_{3}|^{2} \right) \right\} \\ \mathcal{I}_{2} &= -\frac{1}{4} \left\{ |\mathcal{F}_{1}|^{2} - \frac{1}{2} \sin^{2} \theta_{K} \left(|\mathcal{F}_{2}|^{2} + |\mathcal{F}_{3}|^{2} \right) \right\} \\ \mathcal{I}_{3} &= -\frac{1}{4} \left\{ |\mathcal{F}_{2}|^{2} - |\mathcal{F}_{3}|^{2} \right\} \sin^{2} \theta_{K} \\ \mathcal{I}_{4} &= \frac{1}{2} \operatorname{Re} \left(\mathcal{F}_{1}^{*} \mathcal{F}_{2} \right) \sin \theta_{K} \quad \mathcal{I}_{5} = \operatorname{Re} \left(\mathcal{F}_{1}^{*} \mathcal{F}_{3} \right) \sin \theta_{K} \\ \mathcal{I}_{6} &= \operatorname{Re} \left(\mathcal{F}_{2}^{*} \mathcal{F}_{3} \right) \sin^{2} \theta_{K} \quad \mathcal{I}_{7} = \operatorname{Im} \left(\mathcal{F}_{1} \mathcal{F}_{2}^{*} \right) \sin \theta_{K} \\ \mathcal{I}_{8} &= \frac{1}{2} \operatorname{Im} \left(\mathcal{F}_{1} \mathcal{F}_{3}^{*} \right) \sin \theta_{K} \quad \mathcal{I}_{9} = -\frac{1}{2} \operatorname{Im} \left(\mathcal{F}_{2} \mathcal{F}_{3}^{*} \right) \sin^{2} \theta_{K} \\ \end{split}$$

$D \rightarrow K \pi \ell \nu$: results on phase shifts

- Babar study with $244 \cdot 10^3$ events for $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$ [347 fb⁻¹ of data]
- $Br(D^+ \rightarrow K^- \pi^+ e^+ \nu_e) = (4.00 \pm 0.03 \pm 0.04 \pm 0.09) \cdot 10^{-2}$
- Among limitations: $s_{K\pi}$ -dependence of modulus of form factors
 - slow variation of *S*-wave (similar to form factors in $K \rightarrow \pi \pi \ell \nu$)
 - quick variation of P-wave, due to K*

Babar collaboration

Sébastien Descotes-Genon (LPT-Orsay)

Beyond Breit-Wigner for K* contribution

• at very low q^2 : heavy-meson χ PT (expansion in $1/M_D$, $p_{\pi,k}$, $m_{u,d,s}$)

• around K^* peak and large- N_c : resonance Lagrangian

 $\underbrace{D}_{\pi,\times}^{K^*} \xrightarrow{K,\times}_{\pi,\times}^{K,\times}$ Couplings of K^* to $K\pi$ and D

in elastic regime: Omnès resummation from unitarity

$$f_{\ell}^{\prime}(s,s_{l}) = Q_{nf}(s,s_{l}) \exp\left[\frac{(s-s_{0})^{n}}{\pi} \int_{(m_{\pi}+m_{K})^{2}}^{\infty} \frac{dz}{(z-s_{0})^{n}} \frac{\delta_{\ell}^{\prime}(z)}{z-s-i\epsilon}\right]$$

where Q_{nf} is (exponential of) subtraction polynomial of order n-1

 \implies Put these constraints together to get a realistic model for the $D \rightarrow K \pi \ell \nu$ *P*-wave form factors and study BES potential for $K\pi$ phase shifts

J. Charles, SDG, X.W. Kang, H.B. Li, work in progress

A case where it works well

Pion vector form factor: $\langle \pi^0 \pi^- | \bar{d} \gamma^\mu u | 0 \rangle = \sqrt{2} F(s) (p_{\pi^-} - p_{\pi^0})^\mu$ $F(s) = \frac{M_{\rho}^2}{M_{\rho}^2 - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{\frac{-s}{96\pi^2 f_{\pi}^2} \left[\operatorname{Re}A\left(\frac{m_{\pi}^2}{s}, \frac{m_{\pi}^2}{M_{\rho}^2}\right) + \frac{1}{2}\operatorname{Re}A\left(\frac{m_{K}^2}{s}, \frac{m_{K}^2}{M_{\rho}^2}\right)\right]\right\}$ $\Gamma_{\rho}(s) = -\frac{M_{\rho}s}{96\pi^{2}t^{2}} \ln \left[A\left(\frac{m_{\pi}^{2}}{s}, \frac{m_{\pi}^{2}}{M^{2}}\right) + \frac{1}{2}A\left(\frac{m_{K}^{2}}{s}, \frac{m_{K}^{2}}{M^{2}}\right) \right] .$ with A one-loop scalar integral describing $\pi\pi$ rescattering 1.5 log(|F(s)|²) E Guerrero and A. Pich -£ $s/\sqrt{|s|}$ (MeV)

Outlook

Low-energy dynamics of QCD

- governed by chiral symmetry breaking
- related to dynamics of π , K, η described by Chiral Perturbation Theory
- pattern still to be investigated (e.g., assessment of lattice systematics)

 $\pi\pi$ scattering (non-strange sector $N_f = 2: m_u, m_d \rightarrow 0$)

- Several experimental sources, most precise one from $K \to \pi \pi \ell \nu$
- Measurement of *S-P* wave interference (E865, NA48/2)
- When isospin breaking included, good agreement with χPT expectations

 πK scattering (strange sector $N_f = 3 : m_u, m_d, m_s \rightarrow 0$)

- Theoretical studies (dispersion relations): only mild agreement with $\chi {\rm PT}$
- Need low-energy data, e.g., $D \rightarrow K \pi \ell \nu$ (FOCUS, CLEO-c and Babar)
- Beyond Breit-Wigner for P-wave form factors (K* contribution)

Investigation of BES potential to measure πK phase shifts under way

 $\tau \rightarrow \mathbf{K} \pi \nu_{\tau}$

- Studied at BELLE
- Dominated essentially by P-wave
- Constrains *P*-wave *K*π, but not very strongly, due to the importance of additional channels for the correct description of form factors

• Convergence of fits to NNLO χ PT

Bijnens, Jemos

Relative contribution	LO	NLO	NNLO
M_{π}^2	1.035	-0.084	0.049
M_K^2	1.106	-0.181	0.075
M_{η}^2	1.186	-0.224	0.038
F_{π}	0.705	0.220	0.127
F_{K}	0.589	0.260	0.216

- Difficulties between $N_f = 3 \chi PT$ and lattice
 - Poor fits of chiral expressions to lattice spectrum (RBC/UKQCD, PACS-CS)
 - Convergence issues with abnormally small NLO compared to NNLO (MILC)