Rare Charm Decays

Adrian Bevan

IHEP, Beijing, 22nd October 2011

email: a.j.bevan@qmul.ac.uk

Overview

- Introduction
- Neutral final states
- (semi-)leptonic final states
- Final states with missing energy
- Summary

Introduction

What is rare?

- CLEO-c at $\psi(3770)$: 0.8fb⁻¹ (~3.2×10⁶ D pairs)
- BES III at $\psi(3770)$: ~10fb⁻¹ (~40×10⁶ D pairs)
- SuperB at $\psi(3770)$: 500fb⁻¹ (~2×10⁹ D pairs)
 - Two large jumps in data samples could change the perspective on rare decays with time ...
 - ▶ Superb will approach a single event sensitivity at $\sim 10^{-9}$
- ▶ BaBar/Belle at the $\Upsilon(4S)$: ~0.5-1ab⁻¹ of data [0.6-1.2 ×10⁹ events]
- SuperB/Belle II at the $\Upsilon(4S)$: 50-75ab⁻¹ of data [60-90 ×10⁹ events]
 - ▶ Rely on D* tagged mesons, not always the best (but with 50 times more data than at threshold)

LHCb:

- Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
- Not so good with neutral final states (v's, γ 's, π^0 's etc.)

Introduction

What is rare?

- ► CLEO-c at ψ(3770): 0.8fb⁻¹ sensitivity of a few ×10⁻⁵ ► BES III at ψ(3770): ~10fb⁻¹ sensitivity of a few ×10⁻⁶ ► SuperB at ψ(3770): 500fb⁻¹ sensitivity of a few ×10⁻⁸
 - ▶ Two large jumps in data samples could change the perspective on rare decays with time ...
 - ▶ Superb will approach a single event sensitivity at $\sim 10^{-9}$ at threshold
- ▶ BaBar/Belle at the $\Upsilon(4S)$: ~0.5-1ab⁻¹ of data [60-1.2 ×10⁹ events]
- SuperB/Belle II at the $\Upsilon(4S)$: 50-75ab⁻¹ of data [60-90 ×10⁹ events]
 - ▶ Rely on D* tagged mesons, not always the best (but with 50 times more data than at threshold)

LHCb:

- Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
- Not so good with neutral final states (v's, γ 's, π^0 's etc.)

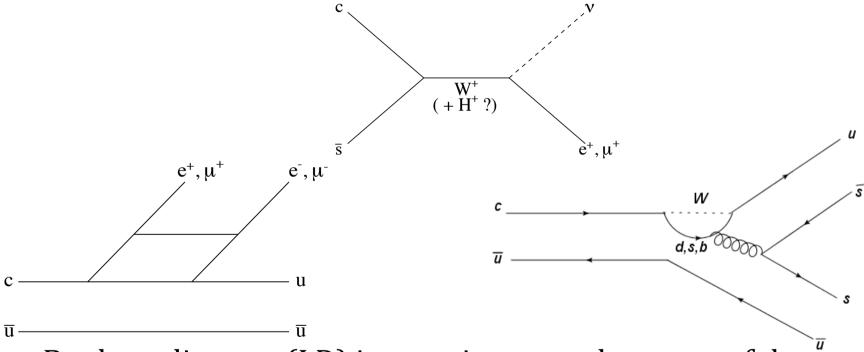
threshold

ntsl

Introduction

What is rare?

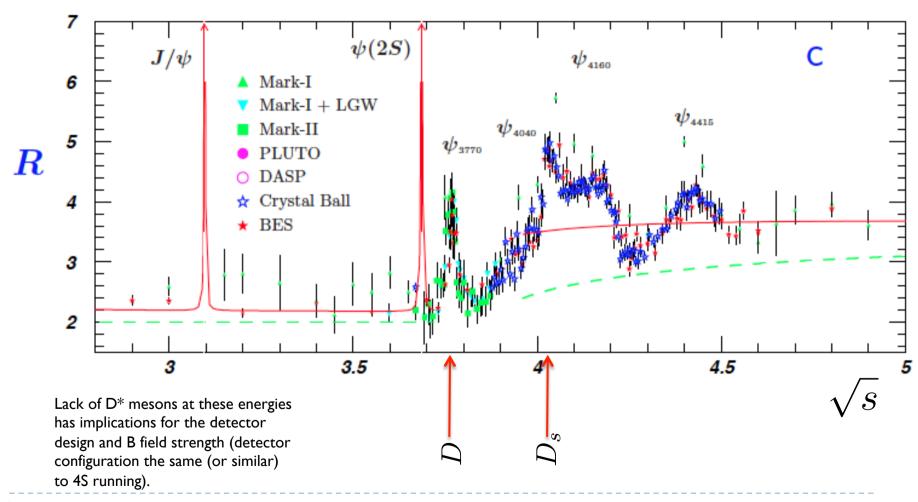
- CLEO-c at $\psi(3770)$: 0.8fb⁻¹ sensitivity of a few $\times 10^{-5}$ BES III at $\psi(3770)$: ~10fb⁻¹ sensitivity of a few ×10⁻⁶ SuperB at $\psi(3770)$: 500fb⁻¹ sensitivity of a few $\times 10^{-8}$
 - Two large jumps in data samples could change the percentive on rare
- BaBar/Belle Perspective changes from threshold to SuperB/Bell D* tagged events at the Y(4S) to pp
- $\frac{1}{100-90} \times 10^9$ events
 - Rely on D* collisions, not always the best (but with 50 times more data threshold)


LHCb:

- Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
- Not so good with neutral final states (v's, γ 's, π^0 's etc.)

What do we want to measure

- NP sensitive processes
 - (or modes controlling theoretical uncertainties for these).



But long distance (LD) interactions can obscure usefulness of the short distance (SD) ones, so not always straightforward to understand NP reach.

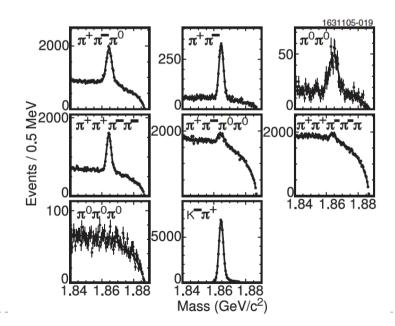
Introduction

▶ Focus on thresholds that SuperB is thinking about

Neutral final states

$$\begin{array}{c} D \to \pi^0 \pi^0 \\ D \to \gamma \gamma \end{array}$$

$$D o \gamma \gamma$$



$D \to \pi^0 \pi^0$

Not particularly rare... but

- Input to the Isospin analysis required to constrain penguin pollution for the TDCPV measurement of $\pi^+\pi^-$ (see Brian Meadows' talk).
- Also background to other rare decays (would be nice to determine this a bit more precisely).

$$\mathcal{B}(D^0 \to \pi^0 \pi^0) = (8.0 \pm 0.8) \times 10^{-4}$$
 (CLEO)

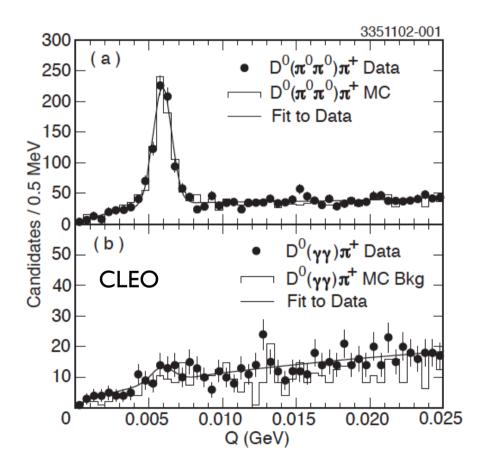
- CLEO recorded 500 events in a sample of 0.281fb⁻¹.
- ε ~30%.
- but dominated by systematic uncertainties (comparable syst. & stat. errors).
- Some improvement possible, but will be dominated by the ultimate systematic errors achievable.

$$D \rightarrow \gamma \gamma$$

Dominated by long distance effects as
$$\mathcal{B}(D^0\to\gamma\gamma)_{SD} = 3.0\times10^{-11}$$

$$\mathcal{B}(D^0\to\gamma\gamma)_{LD} = (1.0\pm0.5)\times10^{-8}$$
 Burdman/Fajfer

- VMD model based calculations suggest a slightly larger BF.
- Rate can be enhanced by New Physics.
- Rate is related to the rare di-lepton decay via:


$$\mathcal{B}(D^0 \to \mu^+ \mu^-)_{LD} = 3.0 \times 10^{-5} \times \mathcal{B}(D^0 \to \gamma \gamma)$$

- BES III would reach a limit of 0.5×10^{-7} with 20 fb^{-1} of data.
- SuperB should be able to reach a sensitivity of $\sim 10^{-7}$ (current limit from CLEO $< 2.7 \times 10^{-5}$).
 - Should be good enough to place a strong constraint on the di-muon mode LD contribution.
 - Potential backgrounds include $\pi^0\pi^0$, $\pi^0\eta$, $\eta\eta$, charged semi-leptonic decays.

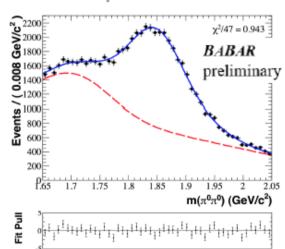
$D \to \gamma \gamma$

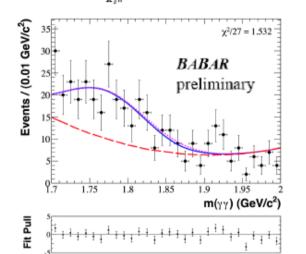
▶ CLEO data PRL **90** 201801 (2003) using 13.8 fb⁻¹ of data.

- Measured $\gamma\gamma/\pi^0\pi^0$
- Current value reported in PDG <2.7×10⁻⁵
- Measurement used D* tagged events from the 4S data sample to isolate signal region.
- Systematic uncertainties dominated by π and γ reconstruction efficiencies.

Search for the Decay D⁰ to yy (previously presented at FPCP 2011)

Search for forbidden FCNC decay


Dominant background from D^0 to $\pi^0\pi^0$


Branching fraction measurements for $\gamma\gamma$ and $\pi^0\pi^0$ modes normalized to D^0 to K π^0

D⁰ decays from D⁺ used to suppress backgrounds along with pion veto (95% rejection 66% signal efficiency)

$$B(D^{0} \to \pi^{0}\pi^{0}) = \frac{\frac{1}{\epsilon_{\pi^{0}\pi^{0}}} N(D^{0} \to \pi^{0}\pi^{0})}{\frac{1}{\epsilon_{K_{S}^{0}\pi^{0}}} N(D^{0} \to K_{S}^{0}\pi^{0})} \times B(D^{0} \to K_{S}^{0}\pi^{0})$$

$$B(D^{0} \to \gamma \gamma) = \frac{\frac{1}{\epsilon_{\gamma \gamma}} N(D^{0} \to \gamma \gamma)}{\frac{1}{\epsilon_{F^{0} \to 0}} N(D^{0} \to K_{S}^{0} \pi^{0})} \times B(D^{0} \to K_{S}^{0} \pi^{0})$$

Final Results (about a factor 10 improvement over previous results)
$$B(D^0 \rightarrow \pi^0 \pi^0) = (8.4 \pm 0.1 \pm 0.4 \pm 0.3) \times 10^{-4}$$

$$B(D^0 \to \gamma \gamma) < 2.4 \times 10^{-6}$$

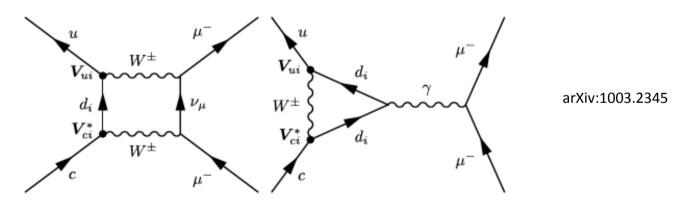
R. M. White, ICPP-II 2011, Istanbul, Turkey

Rare Leptonic decays

$$D \to \ell^+ \ell^-$$

$$D \to u \ell^+ \ell^-$$

$$D \to u \ell^+ \ell^-$$



$$D \to \ell^+ \ell^-$$

- Expect a low rate in the SM.
 - ▶ SD contribution $\sim 10^{-18}$ (Burdman et al.)
 - ► LD contribution related to $D \rightarrow \gamma \gamma$

$$\mathcal{B}(D^0 \to \mu^+ \mu^-)_{LD} = 3.0 \times 10^{-5} \times \mathcal{B}(D^0 \to \gamma \gamma)$$

▶ SD contributions allow for possible NP enhancements:

But we need to understand LD rate in order to interpret any signals found.

$D \to \ell^+ \ell^-$

Recent results from Belle:

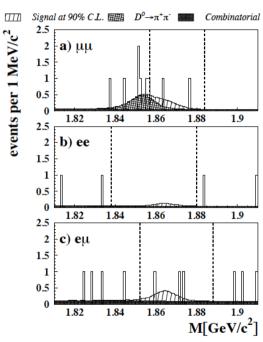
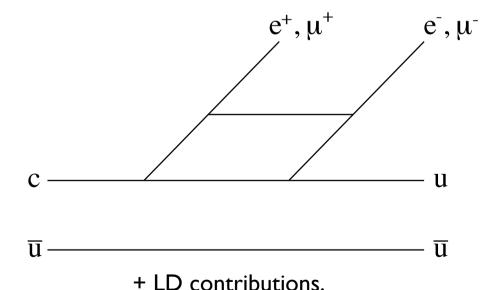


TABLE II. Summary of the number of expected background events (N_{bkg}) , number of observed events (N) in the signal region, the reconstruction efficiencies $(\epsilon_{\ell\ell} \text{ and } \epsilon_{\pi\pi})$ of the $D^0 \to \ell^+\ell^-$ and $D^0 \to \pi^+\pi^-$ decays, the factors f and the branching fraction upper limits at the 90% confidence level.

	$D^0 o \mu^+ \mu^-$	$D^0 \to e^+e^-$	$D^0 \to e^{\pm} \mu^{\mp}$
$\overline{N_{bkg}}$	3.1 ± 0.1	1.7 ± 0.2	2.6 ± 0.2
N	2	0	3
$\epsilon_{\ell\ell} [\%]$	7.02 ± 0.34	5.27 ± 0.32	6.24 ± 0.27
$\epsilon_{\pi\pi} [\%]$	12.42 ± 0.10	10.74 ± 0.09	11.22 ± 0.09
$f[10^{-8}]$	$4.84(1 \pm 5.3\%)$	$6.47(1 \pm 6.4\%)$	$5.48(1 \pm 4.8\%)$
$UL [10^{-7}]$	1.4	0.79	2.6
			arViv:1002 224E

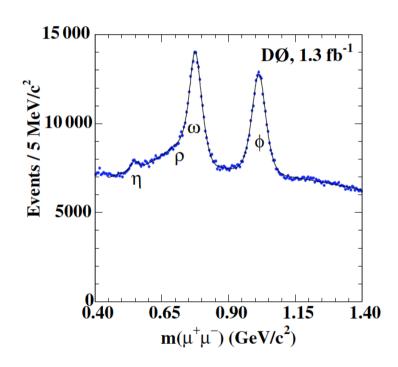
arXiv:1003.2345

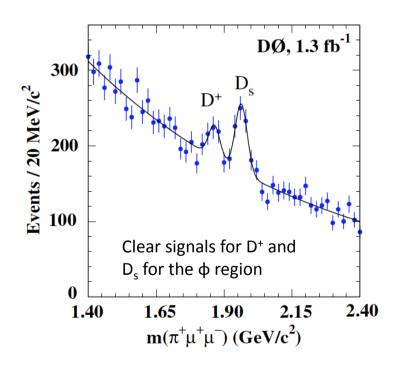

- ▶ BES III expects to reach 2-17×10⁻⁸ with 20fb⁻¹.
- ▶ SFFs should reach limits of $\sim 10^{-8}$.
- ▶ LHCb expected to encounter a wall from systematic errors at $\sim 2.4 \times 10^{-8}$...

$D \rightarrow u\ell^+\ell^-$

▶ Inclusive branching fraction $\sim 0.8 \times 10^{-8}$ [charged rate $\sim \times 2$]

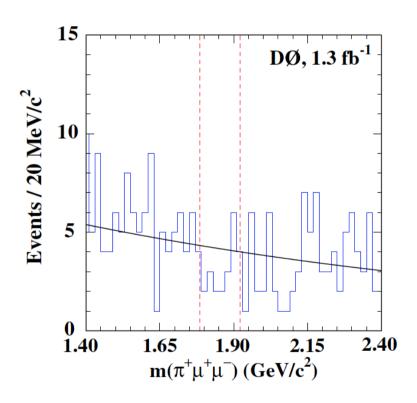
$$\frac{d\Gamma_{c \to u\ell^+\ell^-}}{d\hat{s}} = \tau_D \frac{G_F^2 \alpha^2 m_c^6}{768\pi^5} (1 - \hat{s})^2 \left[\left(\left| C_9^{(')} \text{ eff}(m_c) \right|^2 + \left| C_{10} \right|^2 \right) (1 + 2\hat{s}) \right]
+ 12 C_7^{\text{eff}}(m_c) \operatorname{Re} \left[C_9^{(')} \text{ eff}(m_c) \right] + 4 \left(1 + \frac{2}{\hat{s}} \right) \left| C_7^{\text{eff}}(m_c) \right|^2 \right]$$


Differential rate is dominated by contributions from Φ and ω resonances.


LD saturates SD effects, but NP enhancements can be clearly determined (away from resonant structure).

$D \rightarrow u\ell^+\ell^-$: The D0 result

- ▶ D0 searched for $c \rightarrow u\mu^+\mu^-$ transitions: PRL **100** 101801 (2008)
 - Clearly visible signal around resonances, however there is a lot of background...

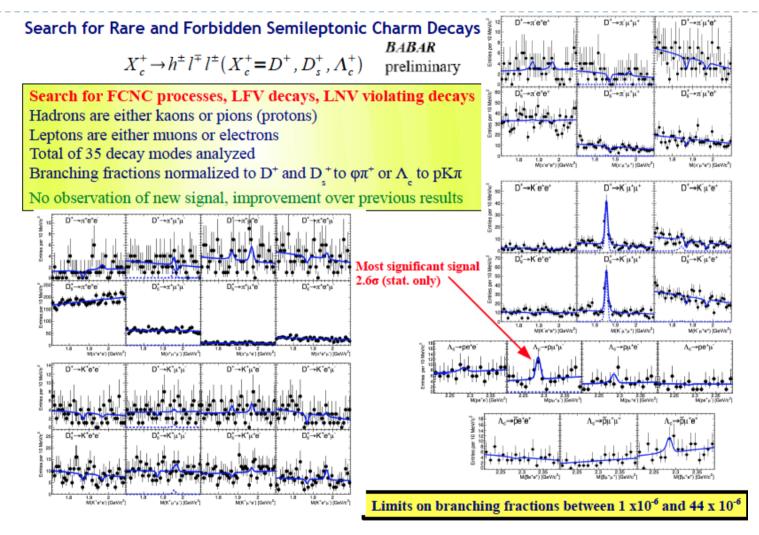


CLEO, FOCUS and BaBar have results on FCNC searches as well

$D \rightarrow u\ell^+\ell^-$: The D0 result

- ▶ D0 searched for $c \rightarrow u\mu^+\mu^-$ transitions: PRL **100** 101801 (2008)
 - Vetoing the resonance however shows no evidence for signal...

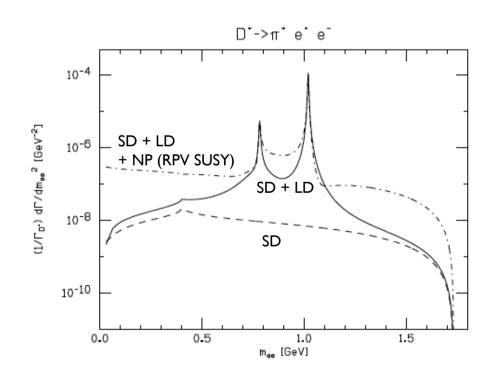
D0 place an upper limit on this channel of (excluding the ϕ):


$$< 3.9 \times 10^{-6} (90\%, C.L.)$$

Given that enhancement depends on q^2 of the di-lepton pair, we want to analyse both ee and $\mu\mu$ channels.

SuperB should be able to probe sensitivities down to $^{\sim}1\times10^{-8}$.

Search results from BaBar

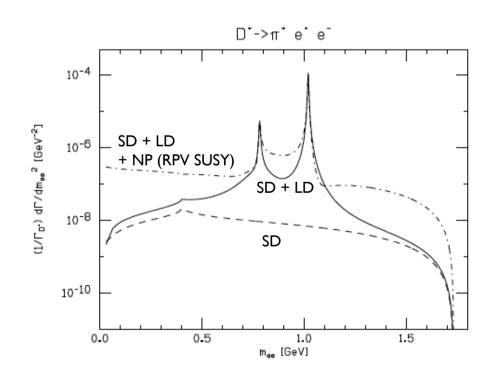


$D \to u \ell^+ \ell^-$

Exclusive BRs:

	DerB Sensitivity		
$D^0 o \pi^0 \ell^+ \ell^-$	2×10^{-8}	0.8×10^{-6}	$4.5 \times 10^{-5} \text{ (CLEO)}$
$D^+ o \pi^+ \ell^+ \ell^-$	1×10^{-8}	2×10^{-6}	$< 3.9 \times 10^{-6} \text{ (D0)}$
$D^0 o\pi^0 e^\pm\mu^\mp$	2×10^{-8}	_	
$D^+ \rightarrow h^- \ell^+ \ell^+ \ (h = \pi$	$,K) 1\times 10^{-8}$	_	$<3.6\times10^{-6}~({\rm CLEO})$
$D^+ ightarrow h^- e^\pm \mu^\mp$ $(h=\pi)$	$(r, K) 1 \times 10^{-8}$	_	$<3.4\times10^{-6}~({\rm CLEO})$

Differential rate is dominated by contributions from Φ and ω resonances.


LD saturates SD effects, but NP enhancements can be clearly determined (away from resonant structure).

$D \to u\ell^+\ell^-$

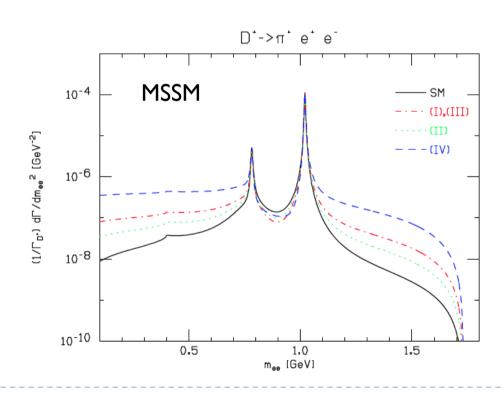
Exclusive BRs:

Channel	Sensitivity	BR (th.)	UL (expt.)
$D^0 o \pi^0 \ell^+ \ell^-$	2×10^{-8}	0.8×10^{-6}	$4.5 \times 10^{-5} \text{ (CLEO)}$
$D^+ o \pi^+ \ell^+ \ell^-$	1×10^{-8}	2×10^{-6}	$< 3.9 \times 10^{-6} \text{ (D0)}$
$D^0 o\pi^0 e^\pm\mu^\mp$	2×10^{-8}	_	
$D^+ \rightarrow h^- \ell^+ \ell^+ \ (h = \pi, F$	(1×10^{-8})	_	$< 3.6 \times 10^{-6} \text{ (CLEO)}$
$D^+ ightarrow h^- e^\pm \mu^\mp \ (h=\pi, h)$	$K) 1 \times 10^{-8}$	_	$< 3.4 \times 10^{-6} \text{ (CLEO)}$

Broadly speaking there are 3 regions of interest:

- Low q² (below resonances)
- High q² (above resonances)
- in between resonances (challenging?)

Easier to see NP effects away from resonant structure.


SuperB can start probing this.

$D \to u\ell^+\ell^-$

Exclusive BRs:

	Sensitivity		
$D^0 o \pi^0 \ell^+ \ell^-$	2×10^{-8}	0.8×10^{-6}	$4.5 \times 10^{-5} \text{ (CLEO)}$
$D^+ \to \pi^+ \ell^+ \ell^-$	1×10^{-8}	2×10^{-6}	$< 3.9 \times 10^{-6} \text{ (D0)}$
$D^0 o\pi^0 e^\pm\mu^\mp$	2×10^{-8}	_	
$D^+ \to h^- \ell^+ \ell^+ \ (h = \pi, K)$	1×10^{-8}	_	$< 3.6 \times 10^{-6} \text{ (CLEO)}$
$D^+ \rightarrow h^- e^{\pm} \mu^{\mp} \ (h = \pi, K)$	1×10^{-8}	_	$< 3.4 \times 10^{-6} \text{ (CLEO)}$

Broadly speaking there are 3 regions of interest:

- Low q² (below resonances)
- High q² (above resonances)
- in between resonances (challenging?)

Easier to see NP effects away from resonant structure.


SuperB can start probing this.

$D \to u \ell^+ \ell^-$

Exclusive BRs:

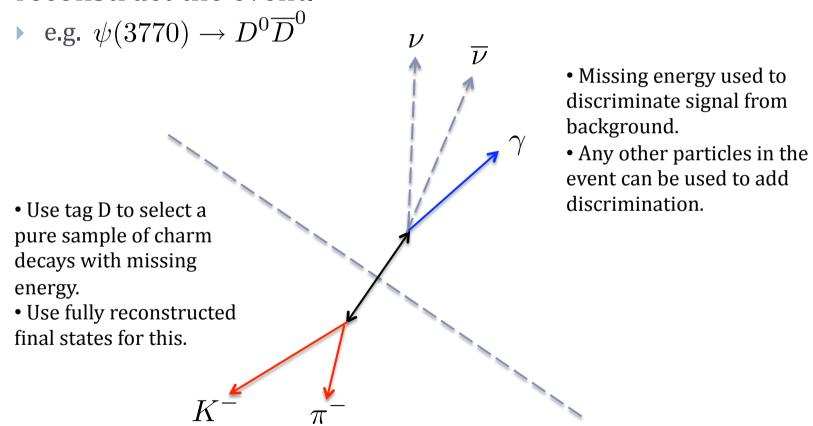
		Sensitivity		UL (expt.)
$D^0 o \pi^0 \ell^+ \ell^-$		2×10^{-8}	0.8×10^{-6}	4.5×10^{-5} (CLEO)
$D^+ \to \pi^+ \ell^+ \ell^-$		1×10^{-8}	2×10^{-6}	$< 3.9 \times 10^{-6} \text{ (D0)}$
$D^0 o\pi^0 e^\pm\mu^\mp$		2×10^{-8}	_	
$D^+ \to h^- \ell^+ \ell^+ \ (h = \pi,$	K)	1×10^{-8}	_	$< 3.6 \times 10^{-6} \text{ (CLEO)}$
$D^+ o h^- e^\pm \mu^\mp \ (h = \pi$,K)	1×10^{-8}	_	$<3.4\times10^{-6}~({\rm CLEO})$

N.B. pℓℓ has a larger enhancement at low di-lepton mass.

Experimentally more challenging, but could provide a clearer signal for NP.

Low q^2 region is of most interest, so e^+e^- is potentially much more interesting than $\mu^+\mu^-$.

Final states with missing energy


$$D \to \nu \overline{\nu}(+\gamma)$$
$$D \to X_u \nu \overline{\nu}$$

$$D \to X_u \nu \overline{\nu}$$

D recoil method

▶ Here we need to resort to D recoil methodology to reconstruct the event.

$D \to \nu \overline{\nu} (+\gamma)$

- Helicity suppressed in the Standard Model
 - ▶ BF $\sim 1.1 \times 10^{-30}$
 - ▶ The final state with a photon is much more copious: 10^{-14}
 - Beyond the SM one could find significant enhancements
 - e.g. scalar particles such as DM candidates: PRD **82**:034005, 2010.
 - Require either an isolated photon in the detector ($\nu\overline{\nu}\gamma$), or nothing
 - lacktriangleright Experimentally challenging: backgrounds include where both particles go down the beam pipe... e.g. $D o K\pi$
 - $\nu \overline{\nu} \gamma$ has the added advantage of the photon (and smaller allowed phase space for NP).
 - ▶ Also worth searching for the corresponding D_s decays ... see next topic.

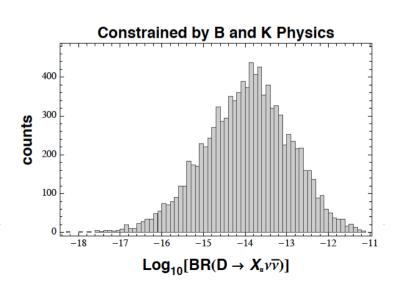
+ Analogues for B_{d,s} and K decays

$$D \to X_u \nu \overline{\nu}$$

- Similar to the invisible decay searches...
 - Can perform inclusive or exclusive measurements, both sets of measurements will provide more information to constrain NP.
 - lacksquare Analogy with $B o X
 u \overline{
 u}$
 - Similar interest for $D_s \to X_s \nu \overline{\nu}$
 - LD contributions should be small, and SM rate is tiny

$$\mathcal{B}(B^+ \to X_u \nu \overline{\nu}) \simeq 1.2 \times 10^{-15}$$

$$\mathcal{B}(B^0 \to X_u \nu \overline{\nu}) \simeq 5 \times 10^{-16}$$


$$D \to X_u \nu \overline{\nu}$$

- Similar to the invisible decay searches...
 - Can perform inclusive or exclusive measurements, both sets of measurements will provide more information to constrain NP.
 - Analogy with $B \to X \nu \overline{\nu}$
 - ightharpoonup Similar interest for $D_s o X_s
 u \overline{
 u}$
 - LD contributions should be small, and SM rate is tiny

$$\mathcal{B}(B^+ \to X_u \nu \overline{\nu}) \simeq 1.2 \times 10^{-15}$$

$$\mathcal{B}(B^0 \to X_u \nu \overline{\nu}) \simeq 5 \times 10^{-16}$$

- Large enhancements possible in NP models
 - Up to ×1000 in LHT models
- Plausibly could reach $\sim 10^{-8}$ with SuperB at threshold, need to study potential for D* tagged samples.
- π^0 mode is worth searching for as an indication for CPV.

Bigi & Paul arXiv:1110.2862

$$D^+_{(s)} \to \ell^+ \nu_\ell$$

• Complementary to $B^+ \to \ell^+ \nu_\ell$

Complementary to
$$B^+ \to \ell^+ \nu_{\ell}$$

$$W^+ + W^+ = e^+, \mu^+$$

$$\Gamma(D^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} f_{D^+}^2 m_\ell^2 M_{D^+} \left(1 - \frac{m_\ell^2}{M_{D^+}^2} \right)^2 |V_{cd}|^2$$

$$\Gamma(D_s^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} f_{D_s^+}^2 m_\ell^2 M_{D_s^+} \left(1 - \frac{m_\ell^2}{M_{D_s^+}^2} \right)^2 |V_{cs}|^2$$

- Can also test lepton universality with ratios of rates.
- Lots of excitement a few years ago because of a discrepancy with f_{Ds} from lattice ... unfortunately this was not a sign of NP.
- CLEO find:

$$\mathcal{B}(D_s^+ \to e^+ \nu) = \langle 1.2 \times 10^{-4} (90\% \, C.L.) \\ \mathcal{B}(D_s^+ \to \mu^+ \nu) = (0.565 \pm 0.045 \pm 0.017)\% \\ \mathcal{B}(D_s^+ \to \tau^+ \nu) = (6.42 \pm 0.81 \pm 0.18)\%$$

which are compatible with SM expectations.

Summary

▶ Indication of luminosities required to reach 0.5% statistical precision on different modes vs. precision at 500fb⁻¹:

Channel	Integrated luminosity	Integrated luminosity	precision with 500fb ⁻¹
	(fb^{-1})	(fb^{-1})	$(\% \mathrm{stat.})$
$D^0 o K^- e^+ u_e$	1.3	33	0.03
$D^0 o K^{*-} e^+ \nu_e$	17	425	0.09
$D^0 o \pi^- e^+ u_e$	20	500	0.10
$D^0 ightarrow ho^- e^+ u_e$	45	1125	0.15
$D^+ \to K_S^0 e^+ \nu_e$	9	225	0.07
$D^+ \to \bar K^{*0} e^+ \nu_e$	9	225	0.07
$D^+ o \pi^0 e^+ u_e$	75	1900	0.19
$D^+ o ho^0 e^+ u_e$	110	2750	0.23
$D_s^+ o \phi e^+ u_e$	85	2200	0.21
$D_s^+ o K_S^0 e^+ u_e$	1300	33000	0.81
$D_s^+ \to K^{*0} e^+ \nu_e$	1300	33000	0.81

Summary

Channel	Sensitivity
$D^0 \to e^+ e^-, D^0 \to \mu^+ \mu^-$	1×10^{-8}
$D^0 \to \pi^0 e^+ e^-, D^0 \to \pi^0 \mu^+ \mu^-$	$2 imes 10^{-8}$
$D^0 \rightarrow \eta e^+ e^-, D^0 \rightarrow \eta \mu^+ \mu^-$	3×10^{-8}
$D^0 o K^0_{\scriptscriptstyle S} e^+ e^-, D^0 o K^0_{\scriptscriptstyle S} \mu^+ \mu^-$	3×10^{-8}
$D^+ \to \pi^+ e^+ e^-, \ D^+ \to \pi^+ \mu^+ \mu^-$	1×10^{-8}
$D^0 o e^\pm \mu^\mp$	1×10^{-8}
$D^+ \to \pi^+ e^\pm \mu^\mp$	1×10^{-8}
$D^0 o \pi^0 e^\pm \mu^\mp$	2×10^{-8}
$D^0 o \eta e^\pm \mu^\mp$	3×10^{-8}
$D^0 o K^0_{\scriptscriptstyle S} e^\pm \mu^\mp$	3×10^{-8}
$D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+$	1×10^{-8}
$D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+$	1×10^{-8}
$D^+ \to \pi^- e^{\pm} \mu^{\mp}, \ D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8}

- Great potential to search for NP and understand the rare branching fractions in charm.
- Threshold running will give SuperB another angle, and make it competitive compared to the previous generation.
 - Was not always the case with 4S for BaBar and Belle.

Summary

- A number of interesting rare decays to study
 - In many cases can complements searches that can be performed at ϕ and $\Upsilon(4S)$ resonances.
 - Provides a clean environment to study low multiplicity states:
 - Help understand the detector hermiticity for more complicated environments such as $\Upsilon(4S)$ and $\Upsilon(5S)$.
 - Correlations between decays need to be understood
 - i.e. what can we learn about NP from this set of modes.
 - & where do long distance contributions wash out NP effects?
 - Many interesting decays have been ignored, and quite a few discussed here need to be studied in detail on SuperB
 - ▶ If people want to work on this area, extra effort would be welcome.
 - lets start the discussion.