Rare Charm Decays

Adrian Bevan
IHEP, Beijing, 22nd October 2011

e-mail: a.j.bevan@qmul.ac.uk
Overview

- Introduction
- Neutral final states
- (semi-)leptonic final states
- Final states with missing energy
- Summary
Introduction

- **What is rare?**
  - CLEO-c at $\psi(3770)$: $0.8\text{fb}^{-1} (\sim 3.2 \times 10^6 \text{D pairs})$
  - BES III at $\psi(3770)$: $\sim 10\text{fb}^{-1} (\sim 40 \times 10^6 \text{D pairs})$
  - SuperB at $\psi(3770)$: $500\text{fb}^{-1} (\sim 2 \times 10^9 \text{D pairs})$
    - Two large jumps in data samples could change the perspective on rare decays with time ...
    - Superb will approach a single event sensitivity at $\sim 10^{-9}$

- BaBar/Belle at the $\Upsilon(4S)$: $\sim 0.5-1\text{ab}^{-1}$ of data [$0.6-1.2 \times 10^9$ events]
- SuperB/Belle II at the $\Upsilon(4S)$: $50-75\text{ab}^{-1}$ of data [$60-90 \times 10^9$ events]
  - Rely on D* tagged mesons, not always the best (but with 50 times more data than at threshold)

- LHCb:
  - Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
  - Not so good with neutral final states ($\nu$'s, $\gamma$'s, $\pi^0$'s etc.)
Introduction

What is rare?

- CLEO-c at $\psi(3770)$: $0.8 \text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-5}$
- BES III at $\psi(3770)$: $\sim 10 \text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-6}$
- SuperB at $\psi(3770)$: $500 \text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-8}$
  - Two large jumps in data samples could change the perspective on rare decays with time ...
  - Superb will approach a single event sensitivity at $\sim 10^{-9}$ at threshold

- BaBar/Belle at the $\Upsilon(4S)$: $\sim 0.5-1 \text{ab}^{-1}$ of data $[60-1.2 \times 10^9 \text{ events}]$
- SuperB/Belle II at the $\Upsilon(4S)$: $50-75 \text{ab}^{-1}$ of data $[60-90 \times 10^9 \text{ events}]$
  - Rely on D* tagged mesons, not always the best (but with 50 times more data than at threshold)

- LHCb:
  - Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
  - Not so good with neutral final states ($\nu'$s, $\gamma'$s, $\pi^0$'s etc.)
Introduction

What is rare?

- CLEO-c at $\psi(3770)$: $0.8\text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-5}$
- BES III at $\psi(3770)$: $\sim 10\text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-6}$
- SuperB at $\psi(3770)$: $500\text{fb}^{-1}$ .... sensitivity of a few $\times 10^{-8}$
  - Two large jumps in data samples could change the perspective on rare decays with time ...
  - Superb will approach a single event sensitivity at $\sim 10^{-9}$ at threshold

- BaBar/Belle at $\Upsilon(4S)$: $0.5-1\text{ab}^{-1}$ of data $[60-1.2 \times 10^9 \text{ events}]
- SuperB/Belle II at $\Upsilon(4S)$: $50-75\text{ab}^{-1}$ of data $[60-90 \times 10^9 \text{ events}]
  - Rely on $D^*$ tagged events, not always the best (but with 50 times more data than at threshold)

- LHCb:
  - Vast numbers in a hadronic environment: good for charged track final states if channel can be triggered on efficiently.
  - Not so good with neutral final states ($\nu's, \gamma's, \pi^0's$ etc.)

Perspective changes from threshold to $D^*$ tagged events at the $\Upsilon(4S)$ to pp collisions.
What do we want to measure

- NP sensitive processes
  - (or modes controlling theoretical uncertainties for these).

- But long distance (LD) interactions can obscure usefulness of the short distance (SD) ones, so not always straightforward to understand NP reach.
Introduction

- Focus on thresholds that SuperB is thinking about

Lack of D* mesons at these energies has implications for the detector design and B field strength (detector configuration the same (or similar) to 4S running).
Neutral final states

\[ D \rightarrow \pi^0 \pi^0 \]

\[ D \rightarrow \gamma \gamma \]
$D \rightarrow \pi^0 \pi^0$

- Not particularly rare... but
  - Input to the Isospin analysis required to constrain penguin pollution for the TDCPV measurement of $\pi^+\pi^-$ (see Brian Meadows’ talk).
  - Also background to other rare decays (would be nice to determine this a bit more precisely).

$$\mathcal{B}(D^0 \rightarrow \pi^0 \pi^0) = (8.0 \pm 0.8) \times 10^{-4} \text{ (CLEO)}$$

- CLEO recorded 500 events in a sample of 0.281 fb$^{-1}$.
- $\varepsilon \sim 30\%$.
- but dominated by systematic uncertainties (comparable syst. & stat. errors).
- Some improvement possible, but will be dominated by the ultimate systematic errors achievable.
$D \rightarrow \gamma\gamma$

- Dominated by long distance effects as
  \[ \mathcal{B}(D^0 \rightarrow \gamma\gamma)_{SD} = 3.0 \times 10^{-11} \]
  \[ \mathcal{B}(D^0 \rightarrow \gamma\gamma)_{LD} = (1.0 \pm 0.5) \times 10^{-8} \]  
  Burdman/Fajfer

- VMD model based calculations suggest a slightly larger BF.
- Rate can be enhanced by New Physics.

- Rate is related to the rare di-lepton decay via:
  \[ \mathcal{B}(D^0 \rightarrow \mu^+\mu^-)_{LD} = 3.0 \times 10^{-5} \times \mathcal{B}(D^0 \rightarrow \gamma\gamma) \]

- BES III would reach a limit of $0.5 \times 10^{-7}$ with $20\text{fb}^{-1}$ of data.

- SuperB should be able to reach a sensitivity of $\sim 10^{-7}$ (current limit from CLEO $<2.7 \times 10^{-5}$).
  - Should be good enough to place a strong constraint on the di-muon mode LD contribution.
  - Potential backgrounds include $\pi^0\pi^0$, $\pi^0\eta$, $\eta\eta$, charged semi-leptonic decays.
\[ D \rightarrow \gamma\gamma \]

- **CLEO data** PRL 90 201801 (2003) using 13.8 fb\(^{-1}\) of data.

- Measured $\gamma\gamma/\pi^0\pi^0$

- Current value reported in PDG $<2.7\times10^{-5}$.

- Measurement used $D^*$ tagged events from the 4S data sample to isolate signal region.

- Systematic uncertainties dominated by $\pi$ and $\gamma$ reconstruction efficiencies.
$D \rightarrow \gamma\gamma$

Search for the Decay $D^0$ to $\gamma\gamma$ (previously presented at FPCP 2011)

Search for forbidden FCNC decay
Dominant background from $D^0$ to $\pi^0\pi^0$
Branching fraction measurements for $\gamma\gamma$ and $\pi^0\pi^0$ modes normalized to $D^0$ to $K^0\pi^0$
$D^0$ decays from $D^*$ used to suppress backgrounds along with pion veto (95% rejection 66% signal efficiency)

$$B(D^0 \rightarrow \pi^0\pi^0) = \frac{1}{N(D^0 \rightarrow \pi^0\pi^0)} \times B(D^0 \rightarrow K^0\pi^0)$$

$$B(D^0 \rightarrow \gamma\gamma) = \frac{1}{N(D^0 \rightarrow \gamma\gamma)} \times B(D^0 \rightarrow K^0\pi^0)$$

Final Results (about a factor 10 improvement over previous results)

$$B(D^0 \rightarrow \pi^0\pi^0) = (8.4 \pm 0.1 \pm 0.4 \pm 0.3) \times 10^{-4}$$

$$B(D^0 \rightarrow \gamma\gamma) < 2.4 \times 10^{-6}$$

R. M. White, ICPP-II 2011, Istanbul, Turkey
Rare Leptonic decays

\[ D \rightarrow \ell^+ \ell^- \]
\[ D \rightarrow u\ell^+ \ell^- \]
$D \rightarrow \ell^+ \ell^-$

- Expect a low rate in the SM.
  - SD contribution $\sim 10^{-18}$ (Burdman et al.)
  - LD contribution related to $D \rightarrow \gamma \gamma$

$$\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-)_{LD} = 3.0 \times 10^{-5} \times \mathcal{B}(D^0 \rightarrow \gamma \gamma)$$

- SD contributions allow for possible NP enhancements:

- But we need to understand LD rate in order to interpret any signals found.
Recent results from Belle:

- BES III expects to reach $2.17 \times 10^{-8}$ with $20\text{fb}^{-1}$.
- SFFs should reach limits of $\sim 10^{-8}$.
- LHCb expected to encounter a wall from systematic errors at $\sim 2.4 \times 10^{-8}$...
\[ D \to u \ell^+ \ell^- \]

- Inclusive branching fraction \( \sim 0.8 \times 10^{-8} \) [charged rate \( \sim \times 2 \)]

\[
\frac{d\Gamma_{c\to u\ell^+\ell^-}}{d\hat{s}} = \tau_D \frac{G_F^2 \alpha^2 m_e^6}{768\pi^5} (1 - \hat{s})^2 \left[ \left( |C_9^{(')} \text{eff}(m_c)|^2 + |C_{10}|^2 \right) (1 + 2\hat{s}) + 12 C_T^{\text{eff}}(m_c) \text{Re}[C_9^{(')} \text{eff}(m_c)] + 4 \left( 1 + \frac{2}{\hat{s}} \right) |C_T^{\text{eff}}(m_c)|^2 \right]
\]

Differential rate is dominated by contributions from \( \Phi \) and \( \omega \) resonances.

LD saturates SD effects, but NP enhancements can be clearly determined (away from resonant structure).

+ LD contributions.
$D \to u \ell^+ \ell^-$: The D0 result

- D0 searched for $c \to u \mu^+ \mu^-$ transitions: PRL 100 101801 (2008)
  - Clearly visible signal around resonances, however there is a lot of background...

CLEO, FOCUS and BaBar have results on FCNC searches as well
**$D \rightarrow u\ell^+\ell^-$: The D0 result**

- D0 searched for $c \rightarrow u\mu^+\mu^-$ transitions: PRL **100** 101801 (2008)
  - Vetoing the resonance however shows no evidence for signal...

D0 place an upper limit on this channel of (excluding the $\phi$):

\[ < 3.9 \times 10^{-6} \ (90\%, C.L.) \]

Given that enhancement depends on $q^2$ of the di-lepton pair, we want to analyse both $ee$ and $\mu\mu$ channels.

SuperB should be able to probe sensitivities down to $\sim1\times10^{-8}$.  

---

**Graph:**
- Events / 20 MeV/c² against $m(\pi^+\mu^+\mu^-)$ (GeV/c²)  
- DØ, 1.3 fb⁻¹
Search results from BaBar

Search for Rare and Forbidden Semileptonic Charm Decays

\[ X_c^+ \to h^+ \ell^- j^z \left( X_c^+=D^+, D_s^+, \Lambda_c^+ \right) \]
preliminary

Search for FCNC processes, LFV decays, LNV violating decays
Hadrons are either kaons or pions (protons)
Leptons are either muons or electrons
Total of 35 decay modes analyzed
Branching fractions normalized to \( D^+ \) and \( D_s^+ \) to \( \phi\pi^+ \) or \( \Lambda_c \) to \( pK\pi \)
No observation of new signal, improvement over previous results

Most significant signal
2.6\( \sigma \) (stat. only)

Limits on branching fractions between \( 1 \times 10^{-3} \) and \( 44 \times 10^{-4} \)

June 23, 2011
R. M. White, ICPP-II 2011, Istanbul, Turkey
$D \rightarrow u \ell^+ \ell^-$

**Exclusive BRs:**

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
<th>BR (th.)</th>
<th>UL (expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow \pi^0 \ell^+ \ell^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>$0.8 \times 10^{-6}$</td>
<td>$4.5 \times 10^{-5}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+ \ell^+ \ell^-$</td>
<td>$1 \times 10^{-8}$</td>
<td>$2 \times 10^{-6}$</td>
<td>$&lt; 3.9 \times 10^{-6}$ (D0)</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0 e^\pm \mu^\mp$</td>
<td>$2 \times 10^{-8}$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^- \ell^+ \ell^+ (h = \pi, K)$</td>
<td>$1 \times 10^{-8}$</td>
<td>—</td>
<td>$&lt; 3.6 \times 10^{-6}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^- e^\pm \mu^\mp (h = \pi, K)$</td>
<td>$1 \times 10^{-8}$</td>
<td>—</td>
<td>$&lt; 3.4 \times 10^{-6}$ (CLEO)</td>
</tr>
</tbody>
</table>

Differential rate is dominated by contributions from $\Phi$ and $\omega$ resonances.

LD saturates SD effects, but NP enhancements can be clearly determined (away from resonant structure).
$D \rightarrow u\ell^+\ell^-$

- Exclusive BRs:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
<th>BR (th.)</th>
<th>UL (expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow \pi^0\ell^+\ell^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>$0.8 \times 10^{-6}$</td>
<td>$4.5 \times 10^{-5}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\ell^+\ell^-$</td>
<td>$1 \times 10^{-8}$</td>
<td>$2 \times 10^{-6}$</td>
<td>$&lt; 3.9 \times 10^{-6}$ (D0)</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0 e^+\mu^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-\ell^+\ell^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td>-</td>
<td>$&lt; 3.6 \times 10^{-6}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-e^+\mu^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td>-</td>
<td>$&lt; 3.4 \times 10^{-6}$ (CLEO)</td>
</tr>
</tbody>
</table>

Broadly speaking there are 3 regions of interest:

- Low $q^2$ (below resonances)
- High $q^2$ (above resonances)
- in between resonances (challenging?)

Easier to see NP effects away from resonant structure.

SuperB can start probing this.
$D \rightarrow u\ell^+\ell^-$

- Exclusive BRs:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
<th>BR (th.)</th>
<th>UL (expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow \pi^0\ell^+\ell^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>$0.8 \times 10^{-6}$</td>
<td>$4.5 \times 10^{-5}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\ell^+\ell^-$</td>
<td>$1 \times 10^{-8}$</td>
<td>$2 \times 10^{-6}$</td>
<td>$&lt; 3.9 \times 10^{-6}$ (D0)</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0\mu^+\mu^-$</td>
<td>$2 \times 10^{-8}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-\ell^+\ell^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td></td>
<td>$&lt; 3.6 \times 10^{-6}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-\mu^+\mu^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td></td>
<td>$&lt; 3.4 \times 10^{-6}$ (CLEO)</td>
</tr>
</tbody>
</table>

Broadly speaking there are 3 regions of interest:
- Low $q^2$ (below resonances)
- High $q^2$ (above resonances)
- in between resonances (challenging?)

Easier to see NP effects away from resonant structure.

SuperB can start probing this.
$D \rightarrow u\ell^+\ell^-$

**Exclusive BRs:**

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
<th>BR (th.)</th>
<th>UL (expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow \pi^0\ell^+\ell^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>$0.8 \times 10^{-6}$</td>
<td>$4.5 \times 10^{-5}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\ell^+\ell^-$</td>
<td>$1 \times 10^{-8}$</td>
<td>$2 \times 10^{-6}$</td>
<td>$&lt; 3.9 \times 10^{-6}$ (D0)</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0 e^+\mu^-$</td>
<td>$2 \times 10^{-8}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-\ell^+\ell^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td>-</td>
<td>$&lt; 3.6 \times 10^{-6}$ (CLEO)</td>
</tr>
<tr>
<td>$D^+ \rightarrow h^-e^+\mu^+$ ($h = \pi, K$)</td>
<td>$1 \times 10^{-8}$</td>
<td>-</td>
<td>$&lt; 3.4 \times 10^{-6}$ (CLEO)</td>
</tr>
</tbody>
</table>

N.B. $\rho\ell\ell$ has a larger enhancement at low di-lepton mass.

Experimentally more challenging, but could provide a clearer signal for NP.

Low $q^2$ region is of most interest, so $e^+e^-$ is potentially much more interesting than $\mu^+\mu^-$. 

Burdman & Shipsey hep-ph/0310076
Final states with missing energy

\[ D \rightarrow \nu \bar{\nu} (+\gamma) \]
\[ D \rightarrow X_u \nu \bar{\nu} \]
D recoil method

- Here we need to resort to D recoil methodology to reconstruct the event.
  - e.g. $\psi(3770) \rightarrow D^0\bar{D}^0$

- Missing energy used to discriminate signal from background.
- Any other particles in the event can be used to add discrimination.

- Use tag D to select a pure sample of charm decays with missing energy.
- Use fully reconstructed final states for this.
$D \rightarrow \nu\bar{\nu}(+\gamma)$

- Helicity suppressed in the Standard Model
  - BF $\sim 1.1 \times 10^{-30}$
  - The final state with a photon is much more copious: $10^{-14}$
  - Beyond the SM one could find significant enhancements
    - e.g. scalar particles such as DM candidates: PRD 82:034005, 2010.
  - Require either an isolated photon in the detector ($\nu\bar{\nu}\gamma$), or nothing ...
    - Experimentally challenging: backgrounds include where both particles go down the beam pipe... e.g. $D \rightarrow K\pi$
    - $\nu\bar{\nu}\gamma$ has the added advantage of the photon (and smaller allowed phase space for NP).
    - Also worth searching for the corresponding $D_s$ decays ... see next topic.

+ Analogues for $B_{d,s}$ and $K$ decays
$D \rightarrow X_u \nu \bar{\nu}$

- Similar to the invisible decay searches...
  - Can perform inclusive or exclusive measurements, both sets of measurements will provide more information to constrain NP.
    - Analogy with $B \rightarrow X \nu \bar{\nu}$
    - Similar interest for $D_s \rightarrow X_s \nu \bar{\nu}$
  - LD contributions should be small, and SM rate is tiny
    $$\mathcal{B}(B^+ \rightarrow X_u \nu \bar{\nu}) \approx 1.2 \times 10^{-15}$$
    $$\mathcal{B}(B^0 \rightarrow X_u \nu \bar{\nu}) \approx 5 \times 10^{-16}$$
\[ D \rightarrow X_u \nu \overline{\nu} \]

- Similar to the invisible decay searches...
  - Can perform inclusive or exclusive measurements, both sets of measurements will provide more information to constrain NP.
    - Analogy with \( B \rightarrow X \nu \overline{\nu} \)
    - Similar interest for \( D_s \rightarrow X_s \nu \overline{\nu} \)
  - LD contributions should be small, and SM rate is tiny
    - \( \mathcal{B}(B^+ \rightarrow X_u \nu \overline{\nu}) \approx 1.2 \times 10^{-15} \)
    - \( \mathcal{B}(B^0 \rightarrow X_u \nu \overline{\nu}) \approx 5 \times 10^{-16} \)

- Large enhancements possible in NP models
  - Up to \( \times 1000 \) in LHT models
- Plausibly could reach \( \sim 10^{-8} \) with SuperB at threshold, need to study potential for \( D^* \) tagged samples.
- \( \pi^0 \) mode is worth searching for as an indication for CPV.

\[ \text{Constrained by } B \text{ and } K \text{ Physics} \]
Complementary to $B^+ \rightarrow \ell^+ \nu_{\ell}$

\[
\begin{align*}
\Gamma(D^+ \rightarrow \ell^+ \nu) &= \frac{G_F^2}{8\pi} f_{D^+}^2 m_{D^+}^2 \left(1 - \frac{m_{\ell}^2}{M_{D^+}^2}\right)^2 |V_{cd}|^2 \\
\Gamma(D_{s}^+ \rightarrow \ell^+ \nu) &= \frac{G_F^2}{8\pi} f_{D_{s}^+}^2 m_{\ell}^2 M_{D_{s}^+} \left(1 - \frac{m_{\ell}^2}{M_{D_{s}^+}^2}\right)^2 |V_{cs}|^2
\end{align*}
\]

- Can also test lepton universality with ratios of rates.

Lots of excitement a few years ago because of a discrepancy with $f_{D_{s}}$ from lattice ... unfortunately this was not a sign of NP.

CLEO find:

\[
\begin{align*}
\mathcal{B}(D_{s}^+ \rightarrow e^+ \nu) &= < 1.2 \times 10^{-4} (90\% \text{ C.L.}) \\
\mathcal{B}(D_{s}^+ \rightarrow \mu^+ \nu) &= (0.565 \pm 0.045 \pm 0.017)\% \\
\mathcal{B}(D_{s}^+ \rightarrow \tau^+ \nu) &= (6.42 \pm 0.81 \pm 0.18)\%
\end{align*}
\]

which are compatible with SM expectations.
### Summary

- Indication of luminosities required to reach 0.5% statistical precision on different modes vs. precision at 500fb⁻¹:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Integrated luminosity (fb⁻¹)</th>
<th>Integrated luminosity precision with 500fb⁻¹ (fb⁻¹)</th>
<th>Precision (% stat.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow K^- e^+ \nu_e$</td>
<td>1.3</td>
<td>33</td>
<td>0.03</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^*^- e^+ \nu_e$</td>
<td>17</td>
<td>425</td>
<td>0.09</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^- e^+ \nu_e$</td>
<td>20</td>
<td>500</td>
<td>0.10</td>
</tr>
<tr>
<td>$D^0 \rightarrow \rho^- e^+ \nu_e$</td>
<td>45</td>
<td>1125</td>
<td>0.15</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^0_s e^+ \nu_e$</td>
<td>9</td>
<td>225</td>
<td>0.07</td>
</tr>
<tr>
<td>$D^+ \rightarrow \bar{K}^*^0 e^+ \nu_e$</td>
<td>9</td>
<td>225</td>
<td>0.07</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^0 e^+ \nu_e$</td>
<td>75</td>
<td>1900</td>
<td>0.19</td>
</tr>
<tr>
<td>$D^+ \rightarrow \rho^0 e^+ \nu_e$</td>
<td>110</td>
<td>2750</td>
<td>0.23</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow \phi e^+ \nu_e$</td>
<td>85</td>
<td>2200</td>
<td>0.21</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^0_s e^+ \nu_e$</td>
<td>1300</td>
<td>33000</td>
<td>0.81</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^*^0 e^+ \nu_e$</td>
<td>1300</td>
<td>33000</td>
<td>0.81</td>
</tr>
</tbody>
</table>
### Summary

- **Great potential to search for NP and understand the rare branching fractions in charm.**

- **Threshold running will give SuperB another angle, and make it competitive compared to the previous generation.**

- **Was not always the case with 4S for BaBar and Belle.**

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow e^+e^-, D^0 \rightarrow \mu^+\mu^-$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0 e^+e^-, D^0 \rightarrow \pi^0 \mu^+\mu^-$</td>
<td>$2 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta e^+e^-, D^0 \rightarrow \eta \mu^+\mu^-$</td>
<td>$3 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0 e^+e^-, D^0 \rightarrow K^0 \mu^+\mu^-$</td>
<td>$3 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+ e^+e^-, D^+ \rightarrow \pi^+ \mu^+\mu^-$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow e^+\mu^\mp$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+ e^+\mu^\mp$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^0 e^+\mu^\mp$</td>
<td>$2 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta e^+\mu^\mp$</td>
<td>$3 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0 e^+\mu^\mp$</td>
<td>$3 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^- e^+e^+, D^+ \rightarrow K^- e^+e^+$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^- \mu^+\mu^+, D^+ \rightarrow K^- \mu^+\mu^+$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^- e^+\mu^\mp, D^+ \rightarrow K^- e^+\mu^\mp$</td>
<td>$1 \times 10^{-8}$</td>
</tr>
</tbody>
</table>
Summary

- A number of interesting rare decays to study
  - In many cases can complements searches that can be performed at $\varphi$ and $\Upsilon(4S)$ resonances.

- Provides a clean environment to study low multiplicity states:
  - Help understand the detector hermiticity for more complicated environments such as $\Upsilon(4S)$ and $\Upsilon(5S)$.

- Correlations between decays need to be understood
  - i.e. what can we learn about NP from this set of modes.
  - & where do long distance contributions wash out NP effects?

- Many interesting decays have been ignored, and quite a few discussed here need to be studied in detail on SuperB
  - If people want to work on this area, extra effort would be welcome.
  - .... lets start the discussion.