Nuclear physics for Astrophysics - experiment

Livius Trache, PhD

"Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH)

Bucharest-Magurele, Romania

NUSYS, July 27 – Aug. 2, 2024, Zhuhai, China

Premises

- Nuclear astrophysics is an important part of all nuclear labs' scientific programs
- **Nuclear astrophysics** now consists or *is close to*
	- Nuclear physics for astrophysics
	- Stellar dynamics
	- Nucleosynthesis modelling
	- (specific) astronomy observations: X-ray and Gammaray space telescopes, cosmochemistry …
	- *Cosmology* (?!)

and there is need for closer interaction among specialists in these fields! This process has started.

Nuclear Physics for Astrophysics

Doing experiments in the nuclear laboratory to understand stars Big Problems: Stars are cold! $E_p = 10s - 100s$ keV There are many reactions occurring in stars

a) Direct measurements – reactions at the low energies the reactions occur in stars, or close to, followed by extrapolations

- Difficult because of extremely low cross sections
- Limited combinations of stable beams targets
- Special accelerators (low energies, but high intensities) + targets + detection conditions (very low signals & high noise (backgr))

b) Indirect methods

- At higher (x10-1000), more convenient laboratory energies, extract relevant information
- $-$ Select quantities we measure \rightarrow NA reaction rates
- Use radioactive beams (RIB) to reach wider ranges of reactions
- Several methods

Vocabulary

Radiative capture reactions

• Direct, or non-resonant part

 $7/28/2024$ ^U HUIPLESUHALL PALL L. Trache - NUSYS 2024 $*$ C. Rolfs and W. Rodney, "Cauldrons in the Cosmos".

- *** Resonant reaction is a two-step process.** $2 + 1$ 12 $\sigma_{_{\mathcal{V}}} \propto \left| \left\langle E_{_f} | H_{_{\mathcal{V}}} | E_{_r} \right\rangle \right| \, \left\langle E_{_r} | H_{_f} | A + p \right\rangle$
- *** The cross section (Breit-Wigner):**

$$
\sigma(E) = \frac{\lambda}{4\pi} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_p \Gamma_\gamma}{(E-E_r)^2 + \left(\frac{\Gamma}{2}\right)^2}
$$

*** The contribution to the reaction rate:**

Warning:

- we plot and say "we determine the astrophysical S-factor"
- but we measure cross sections

Energies and cross sections for some direct measurements (pp and CNO reactions)

M. Smith & E. Rehm

Two big problems:

1. - very small energies and very small cross sections indirect methods $\,mathbf{2}_{728/20}\,$ çeactions in stars involve(d) radioactive nuclei \Rightarrow use RNB $_\mathrm{8}$

Nuclear physics for Astrophysics experiment

2. Direct Measurements in Nuclear Astrophysics

NUSYS, July 27 – Aug. 2, 2024, Zhuhai, China

$Old = direct measurements - problems$ and solutions

- ❖ low cross sections →
- measure longer?!
- **No, bc background issues!**
- **Background from**
	- Cosmic rays
	- Environment radioactivity
- Solution: **shielding**
	- **■** Passive
	- Active
	- **Underground**
- ❖ **Low cross sections**
	- High current accelerators
	- Targets ...
- Detect what?!

Laboratory Underground Good solution: go underground **Nuclear** Astrophysics

Direct measurements - facilities

Several small accelerators worldwide: Europe (Germany, Romania, Italy, Hungary …), US, China, India, etc…

Big improvement: underground labs

- LUNA1, LUNA2, LUNA MV (now Boletti Lab) at LN Gran Sasso, Italy
- Canfranco, Spain
- US: Notre Dame's Diana ?!
- LEAF @ IMP, JUNA
- Romania: activation measurements facility in a salt mine Detection improved:
	- increased efficiency multi detectors
	- coincidences

EXPERIMENTAL SOLUTIONS Direct measurements

IMPROVEMENTS TO REDUCE THE BACKGROUND

-**(UNDERGROUND LABORATORY)**

Use of laboratory with natural shield

(underground physics-for instance LUNA experiment at LNGS-Italy)

2 H(p, γ) 3 He

Laboratory for Underground Nuclear Astrophysics

LUNA MV
(ca. 2012 -->...)
Appr. 3.5MV

Steps

- Reaction ?!
- Targets thin or thick, need to stand high currents
- Calibration of accelerator energies need precision
- Detection and detectors
- Analysis data
- Interpretation
- Extrapolation ?! Most of the time. "Theory guided" is best

Targets for NA

- May be difficult or very difficult
- Solid targets?! Gas targets ?! Composite targets ?!
- Thin targets may be difficult to make and handle – may not take high currents
- Thick target method
	- Advantage of being more resistant
	- Could be easier to cool

Accelerators'calibration very important – done using known resonances

Detectors and detection systems

- Simple: uni- or bi-, because can get close to target/probe
- Detector arrays: more complex, more efficient (?!), better info …

At IFIN-HH

- At IFIN-HH we have a 3 MV tandetron accelerator
- an ultralow background laboratory in a salt mine, Slanic-Prahova, 125 km away
- Ultralow gamma-ray background due to pure salt and compact walls (no cracks for Radon to migrate in)
- Established that activation is the most sensitive method
- Could go into the salt mine, but only when activity has long half-lifes

I. Burducea et al., NIM B, vol. 359, 15: 12–19, 2015

L. Trache - NUSYS 2024

"microBq" Lab

Background spectra collected with a CANBERRA HPGe detector with 100% relative efficiency

L. Trache - NUSYS 2024

- **Motivation: important reaction in nuclear astrophysics:**
- **¹²C+¹²C (Supernovae, massive stars evolution …)**
- **very difficult to measure, fluctuating due to resonances!**
- **No resonances observed in ¹³C+¹²C! Obs: for most energies, the ¹²C+¹²C cross sections are suppressed!**

• **proposed tests of nucleus-nucleus models using ¹³C+¹²C, measured in the Gamow window Test react mech below barrier**

• **Collaboration with group of prof. X. Tang – IMP Lanzhou, China**

The ¹³C+¹²C Experiment: prompt and activation

In beam irradiation, thick targets

 $1.28/2024$ Eased on Data by R. G. Helmer & E. Schoenfled February 2024

Activation and measurements in environments with ultralow background: salt mine

Activation in nuclear laboratory (this is the 3 MV tandetron)

Measurement in salt mine Slanic Prahova (2.5 hrs from Bucharest - very low gammaray background)

Low level background counting

24

Thick target method activation: 3 targets, 3.4 days; measurements: 3.9 days

7/28/2024

L. Trache - NUSYS 2024

25

L. Trache - NUSYS 2024 7/28/2024

Reaction rate recommendation

N.T. Zhang (IMP), D. Tudor (NAG) e.a., **Phys Lett B 801** (2020)

Other cases

- Program to study light ion-ion fusion mechanisms at sub-barrier energies - dr. Alexandra Spiridon in charge
- ${}^{12}C+{}^{12}C, {}^{12}C+{}^{16}O, {}^{16}O+{}^{16}O$ all do not produce activation!
- Try to use neighboring isotopes: ${}^{13}C+{}^{16}O$, ${}^{19}F+{}^{12,13}C...$ most lead to short lived activities => no salt mine!
- Invent something else: clean spectra with coincidences in our lab
- Beta-gamma coincidences station BEGA: two HPGe detectors and a plastic scintilator
	- $-$ background reduction factor \sim 100
	- down to $T_{1/2}$ ~2 min
- Future: fast changing target system

The ¹²C+¹⁶O Reaction

BeGa station (WIP)

Background reduction \sim 1000 (red spectrum)

Further problems - targets The ¹³C+¹⁶O Reaction – Preliminary results

CeO² targets

Alex Spiridon, PD grant (PN-III-P1-1.1-PD-2019-0234)

IFIN-HH

¹³C +¹⁶O – preliminary results

 $E_{\text{Lab}} = 11 \text{ MeV}$ **t irr = 1 hr and tdecay = 25 min**

¹³C +¹⁶O – preliminary results

F + 12,13C – preliminary results

What astronomers show us

What astronomers show us

Impresive?! Vedeti zilnic pe:

https://apod.nasa.gov/apod/astropix.html

What we, Nuclear Physicists show !

Nuclear breakup

L. Trache, Exotic Beam Summer School 2012

$$
\sigma_{-1p}^{\text{th}} = \sum \text{SF}(c; nlj) [\sigma_{\text{sp}}^{\text{stripp}}(nlj) + \sigma_{\text{sp}}^{\text{diff}}(nlj) + \sigma_{\text{sp}}^C(nlj)],
$$

For ⁹C case:

$$
\sigma_{-1p} = [S(1p_{3/2}) + S(1p_{1/2})] \sigma_{sp}(1p_j)
$$

$$
= (C_{p_{3/2}}^2 + C_{p_{1/2}}^2) \sigma_{sp}(1p_j) / b_p^2
$$
^{L. Trade et al., PRL 2001, L. Trace of G6, 035801 (2002)}

 $C(c,nj)$ = the ANC of the system ${}^{9}C \rightarrow {}^{8}B+p$ b_p = the single-particle ANC

$$
C_l^2 = \frac{\sigma_{\exp}}{\sigma_{\text{sp}}^{\text{th}}} \left(\frac{r_L R_l(r_L)}{W_{-\eta, l+1/2}(2\kappa r_L)} \right)^2,
$$

A. Banu et al., PRC 86, 015806 (2012)

