Time-Dependent Density

Functional Theory




Time-Dependent Phenomena in Nuclei

Small-amplitude oscillations:

Giant Dipole Resonance
Giant Quadrupole Resonance
Giant Monopole Resonance
Giant Spin Vibrations










Multi-nucleon transfer reactions

“OAr +2%8pp, E =256 MeV, b = 5.50 fm, density at time= 40 fm/c
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Elements of Time-Dependent Density Functional Theory

A. The Runge-Gross Theorem

Runge-Gross theorem: under certain quite general conditions, there is a one-to-one
correspondence between time-dependent one-body densities n(r,t) and time-dependent one-
body potentials v_(r,t), for a given initial state. That is, a given evolution of the density can be
generated by at most one time-dependent potential.

... define a fictitious system of noninteracting electrons moving in a time-dependent effective
potential, whose density is precisely that of the real system. This effective potential is known as
the time-dependent Kohn-Sham potential.

Just as in ground-state density functional theory (DFT), it consists of an external part, the Hartree
potential, and the exchange-correlation potential, v, (r, t), which is a functional of:

- the entire history of the density, n(r, t),

- the initial interacting wavefunction, W(0), and

- the initial Kohn-Sham wavefunction, ®(0).




B. One-to-one correspondence

N nonrelativistic electrons, mutually interacting via the Coulomb repulsion, in a time-dependent external
potential.

The evolution of the wavefunction is governed by the time-dependent Schroedinger equation:
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...electron density: n(r,t) = N/d3r2 .../d3rN W (r,ro,..., N, )], /dgr n(r,t) = N.

R-G Theorem: the densities n(r, t) and n’(r, t) that evolve from a common initial state W (t = 0) under
the influence of two potentials v,,(r,t) and v’_,(r,t), eventually differ if the potentials differ by more
than a purely time-dependent (r-independent) function:

AVext (7, 1) = Voxt (7, 1) — vl (7, 1) # c(t) .

=>» one-to-one mapping between densities and potentials, which implies that the potential is a
functional of the density.



C. Time-dependent Kohn-Sham Equations

...system of noninteracting electrons that satisfy time-dependent Kohn-Sham equations:
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The corresponding density: 71(7,t) = Z 5 (7, 75)\2 ;
j=1
Is by definition identical to that of the real, interacting system.

’UKS(T’,t) = Vext (ra t) + T)H(T’, t) + ch(ra t) 9
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External potential Exchange-correlation
v (r, 1) = /dBT/ n(r',t) potential
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The exchange-correlation potential = a functional of the entire history of the density, n(r,t), the
initial interacting wavefunction W(0), and the initial Kohn-Sham wavefunction, ®(0).



D. Adiabatic approximation to the K-S Equations

The exact exchange-correlation potential depends on the entire history of the density, as well as the
initial wavefunctions of both the interacting and the Kohn-Sham systems:

Vx|, W(0), D(0)](r,t) = vks[n, ¥(0),P(0)](r,t) — Vext(r,t) — vy [n](r,}t)
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Functionals of the initial density.
V.,.(r,t) has a functional dependence on all n(r,t’) for 0 < t’ < t. The potential remembers the
density’s past, it has memory.

The adiabatic approximation =» ignore all dependence on the past, and allow only a dependence on
the instantaneous density (local in time):

vge ] (r, t) = vEP" [n(t)](r)
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E. Initial-state dependence and memory

...memory due to initial-state dependence, and memory due to the history-dependence of the
density:

Uxe|1, U(0), D(0)](r,t) = vks[n, ¥(0),P(0)](r,t) — Vext(r,t) — vy [n](r,}t)

Memory arises in TDDFT because of the reduced nature of the density as a basic variable: If the
wavefunction of the system was known, there would be no memory dependence, since the
wavefunction at time t contains the complete information about the system at time t.

ALDA  vAIPA(p t) = oWif[n(r t)]  An adiabatic approximation will work well if the system
is slowly-varying so that it remains in a slowly-evolving
lowest-energy state.



TDDFT in Nuclear Physics

A. No pairing - Hartree-Fock

One-body operators

. 0 _
lap(t) = [h(1), p(1)],

N
Density operator: p(f) = Z |k () (Dr (D), expressed in the time-dependent canonical single-
k=1 article basis.
P (b (DI di(1)) = 8]
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TDHF s.p. equations

Self-consistent and density-dependent (ALDA) potentials



B. Pairing - Hartree-Fock-Bogoliubov

E
ZER = [H, R],
B 0 K B h A
R:(_K* 1—,0*)’ Hz(_A* _h*>
i%p(t) = [h(?), p(1)] + k(t)A*(t) — A()k™ (1), Density operator
i%/{(t) = h(t)k () + k()™ () Pairing tensor

+ A@[1 = p* ()] — p()A1).

TD-HFB equations



BCS approximation in the canonical basis

TD-HFB state: (W) = [ [{ux(®) + ve()el(t)ck@)}10).
k>0

Time-reversed orbital

BCS approximation: A = — Aoy — Diagonal pairing field.

d
i Epk(t) = k(D) AL(1) — k(1) Ax(2),

d
iEKk(t) = [ (2) + @)1k (t) + Ap()[20k(2) — 1],

0
ia@k(t» = [h(1) = nk(D)]|Pe (1)),

0
Lo |9r()) = [7(t) — ()]l (1)).

where k(D) = {@eOID1 (D)) + i (1D (1)).
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Isoscalar Quadrupole Vibrations
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Isovector Dipole Vibrations
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