Stellar evolution and nucleosynthesis

Nozomu Tominaga

(National Astronomical Observatory of Japan/Konan University)

1st 2nd Aug 2024 NUSYS2024

Nozomu Tominaga

- Astronomy/Astrophysics
- Research interests
 - Relativistic radiation hydrodynamics
 - Origin of elements
 - Time-domain astronomy
 - Multi-messenger astronomy
 - Galactic archaeology
- <u>https://nozomu-tominaga.jp/</u>

Contents

- Thermonuclear reaction
- Stellar structure
 - Static burning
- Supernova explosion
 - Explosive nucleosynthesis
- Synthesis of heavy elements
- Chemical evolution
- Recent topics

Origin of elements

• Introduction given by Livius Trache-san's lectures.

Thermonuclear reaction

Nuclear reaction equations

• B -> A + ...

 $^{13}N \rightarrow ^{13}C + e^+ + \nu \qquad ^{13}N(\beta^+\nu)^{13}C$

• C + D -> A + ...

 $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$

 $\varepsilon_n = rQ/\rho$

Energy generation rate per reaction Q

• E + F + G -> A + ...

 $^{12}C + \alpha \rightarrow ^{16}O + \gamma$

 $3\alpha \rightarrow^{12} C + \gamma \qquad \qquad \alpha (2\alpha, \gamma)^{12} C$

How are reaction rates evaluated?

Collision of particles

- Reaction: a + X -> Y + b X(a,b)Y
- The reaction occurs when a collides with X.
- a nucleus move to X nucleus with relative velocity of v.

The reaction rate r should be $r(v) = \sigma(v)vn_{\rm a}(v_{\rm a})n_{\rm X}(v_{\rm X})$ where $\sigma(v)$ is the cross section for relative velocity of $v = |v_{\rm a} - v_{\rm X}|$.

Total reaction rate $r = \int r(v) d^3 v_{\rm a} d^3 v_{\rm X}$ $r = n_{\rm a} n_{\rm X} \langle \sigma(v) v \rangle$ where $\langle \sigma(v) v \rangle$ is the average of $\sigma(v) v$.

Maxwell-Boltzmann distribution

$$n(\boldsymbol{v}) = n \left(\frac{m}{2\pi k_{\rm B}T}\right)^{\frac{3}{2}} \exp\left(-\frac{mv^2}{2k_{\rm B}T}\right)$$

Cross section

$$\sigma(E) = \frac{S(E)}{E} \exp\left(-\frac{2\pi Z_1 Z_2 e^2}{\hbar v}\right)$$

$$\langle \sigma v \rangle = \frac{\int \sigma(v) v \exp\left(-\frac{\mu v^2}{2k_{\rm B}T}\right) d^3 v}{\int \exp\left(-\frac{\mu v^2}{2k_{\rm B}T}\right) d^3 v}$$

• S is almost constant for non-resonant reactions.

$$\langle \sigma v \rangle = \frac{S}{\left(k_{\rm B}T\right)^{3/2}} \frac{4}{\left(2\pi\mu\right)^{1/2}}$$
$$\int \exp\left(-\frac{E}{k_{\rm B}T} - \left(\frac{2\mu}{E}\right)^{1/2} \frac{\pi Z_1 Z_2 e^2}{\hbar}\right) dI$$

Gamow window

Reaction rate

$$r = n_1 n_2 \frac{\alpha}{T_7^{2/3}} \exp\left(-\frac{\beta}{T_7^{1/3}}\right)$$

where

$$\begin{aligned} T_7 &= T/10^7 K\\ \alpha &= 2.8 \times 10^{-16} S \left(\frac{Z_1 Z_2 (A_1 + A_2)}{A_1 A_2} \right)^{1/3}\\ \beta &= 20 \left(\frac{A_1 A_2 Z_1^2 Z_2^2}{A_1 + A_2} \right)^{1/3} \text{ [cgs]} \end{aligned}$$

S [keV barn] 1 barn = 10^{-24} cm²

Temperature dependence of reaction rate

$$\varepsilon \propto r \propto \frac{1}{T_7^{2/3}} \exp\left(-\frac{\beta}{T_7^{1/3}}\right)$$
$$\frac{\partial \varepsilon}{\partial T_7} = \frac{1}{T_7^{5/3}} \exp\left(-\frac{\beta}{T_7^{1/3}}\right) \left(\frac{\beta}{3T_7^{1/3}} - \frac{2}{3}\right)$$

- In stellar core, $\beta >> T_7^{1/3}$ and thus $\frac{\partial \varepsilon}{\partial T_7} >> 1$.
- The reaction rate is sensitive to the temperature change. Therefore, the core temperature is almost fixed for each burning stage.

Temperature for burning stages

Burning stage	Temperature
H burning	10 ⁷ K
He burning	10 ⁸ K
C burning	6x10 ⁸ K
Ne burning	10 ⁹ K
O burning	2x10 ⁹ K
Si burning	3x10 ⁹ K

Stellar structure

A star is almost static and shines

In order to be static, stars need **pressure** to support their own gravity.

The pressure stems from thermonuclear fusion reactions.

Stellar structure

Mass conservation

$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$

• Equilibrium of force

Equation of state

$$P = K \rho^{1 + \frac{1}{N}}$$

Lane-emden equation

$$\frac{d}{dr}\left(-\frac{r^2}{\rho G}\frac{dP}{dr}\right) = 4\pi r^2\rho$$

Dimensionless parameters

$$\rho = \rho_{\rm c} \theta(\xi)^N$$

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^N$$

$$P = P_{\rm c}\theta(\xi)^{N+1}$$

$$r = \left(\frac{N+1}{4\pi G}\frac{P_{\rm c}}{\rho_{\rm c}^2}\right)^{1/2}\xi$$

Boundary condition
$$\theta(0) = 1 \qquad \left. \frac{d\theta}{d\xi} \right|_{\xi=0} = 0$$

Solving Lane-Emden eq.,

- Stellar radius: F
- Stellar mass:

$$R = \left(\frac{N+1}{4\pi G}\frac{P_{\rm c}}{\rho_{\rm c}^2}\right)^{-1} \xi_N$$
$$M = \left(\frac{1}{4\pi G^3}\frac{P_{\rm c}^4}{\rho_{\rm c}^3}\right)^{1/2}\varphi_N$$

 $(\mathbf{N}_{t} + \mathbf{1} \mathbf{D} \setminus 1/2)$

$$\theta(\xi_N) = 0 \qquad \varphi_N = -(N+1)^{3/2} \left[\xi^2 \frac{d\theta}{d\xi}\right]_{\xi=\xi_N}$$

- Equation of state
 - Gas, non-rela. deg. e⁻ gas: N=3/2, $\,P \propto
 ho^{rac{5}{3}}$
 - Radiation, rela. deg. e⁻ gas: N=3, $P \propto \rho^{\frac{4}{3}}$

Degenerate pressure of electrons

- Degenerate pressure at T=0K
 - Non-relativistic:
 - Ultrarelativistic:

$$P_e^{(0)} = \frac{3\pi}{15h^3m_e} p_{\rm F}^5 \propto n_e^{5/3}$$
$$P_e^{(0)} = \frac{2\pi c}{3h^3} p_{\rm F}^4 \propto n_e^{4/3}$$

 Q_{π}

- For the ultrarelativistic case,
 - Stellar mass

Chandrasekhar's limiting mass $M_{
m ch}=1.46\left(rac{Y_e}{0.5}
ight)^2M_{\odot}$

– Stellar radius

$$R \propto Y_e \rho_{\rm c}^{-1/3} \xrightarrow[\rho_{\rm c} \to \infty]{} 0$$

In reality, e⁻-capture takes place and a neutron star will form.

Max. temp. of stars

Static burning

H burning

- A star mainly consists of H and He.
- However, products of the major two-particle combinations are unstable.
 - p+p->²He->p+p
 - p + ⁴He -> ⁵Li -> p + ⁴He
 - ⁴He + ⁴He -> ⁸Be -> ⁴He + ⁴He
- Therefore, bypassing reactions, PP chain and CNO cycle, are needed for H burning.

PP chain - PPI -

Pure H gas

- $p + p -> d + e^+ + v$
- $d + p \rightarrow {}^{3}He + \gamma$
- ³He + ³He -> ⁴He + 2p

Reaction rate

$$r_{pp} = \lambda_{pp} n_p n_p / 2$$

 $r_{pd} = \lambda_{pd} n_p n_d$
 $r_{33} = \lambda_{33} n(^{3}\text{He}) n(^{3}\text{He}) / 2$

$$\frac{dn_p}{dt} = -2\lambda_{pp}\frac{n_p^2}{2} + 2\lambda_{33}\frac{n(^3\text{He})^2}{2}$$
$$\frac{dn_d}{dt} = \lambda_{pp}\frac{n_p^2}{2} - \lambda_{pd}n_pn_d$$
$$\frac{dn(^3\text{He})}{dt} = \lambda_{pd}n_pn_d - 2\lambda_{33}\frac{n(^3\text{He})^2}{2}$$
$$\frac{dn(^4\text{He})}{dt} = \lambda_{33}\frac{n(^3\text{He})^2}{2}$$

PPII and PPIII chains

- If ⁴He exists, the following reactions take place ³He(⁴He, γ)⁷Be(e^-, ν)⁷Li($p, {}^4$ He)⁴He (PPII) ³He(⁴He, γ)⁷Be(p, γ)⁸B($\beta^+ \nu$)⁸Be^{*}(⁴He)⁴He (PPIII)
- Since the number of p + p reaction (slow) is once, these could be faster than PPI depending on ρ,T,X.

Reaction	Q value, Mev	Average v loss, Mev	ker	So, barns	$\frac{dS}{dE}$, barns	В	$ au_{12},$ years†
$ \begin{array}{l} \mathrm{H}^{1}(p,\beta^{+}\nu)\mathrm{D}^{2}\\ \mathrm{D}^{2}(p,\gamma)\mathrm{He}^{3}\\ \mathrm{He}^{3}(\mathrm{He}^{3},2p)\mathrm{He}^{4}\\ \mathrm{He}^{3}(\alpha,\gamma)\mathrm{Be}^{7}\\ \mathrm{Be}^{7}(e^{-},\nu)\mathrm{Li}^{7}\\ \mathrm{Li}^{7}(p,\alpha)\mathrm{He}^{4}\\ \mathrm{Be}^{7}(p,\gamma)\mathrm{B}^{8} \end{array} $	$1.442 \\ 5.493 \\ 12.859 \\ 1.586 \\ 0.861 \\ 17.347 \\ 0.135$	0.263 0.80	3.782.55.04.71.24.0	$\begin{array}{c} \times 10^{-22} \\ \times 10^{-4} \\ \times 10^{3} \\ \times 10^{-1} \end{array}$ $\begin{array}{c} \times 10^{2} \\ \times 10^{-2} \end{array}$	$4.2 \times 10^{-24} \\ 7.9 \times 10^{-6} \\ -2.8 \times 10^{-4}$	$33.81 \\ 37.21 \\ 122.77 \\ 122.28 \\ 84.73 \\ 102.65$	$7.9 \times 10^{9} 4.4 \times 10^{-8} 2.4 \times 10^{5} 9.7 \times 10^{5} 3.9 \times 10^{-1} 1.8 \times 10^{-1} 6.6 \times 10^{1}$
$B^{\delta}(\beta^+\nu)Be^{\delta^+}(\alpha)F$	18.074	7.2	+ el	<u> </u>			3 × 10-

PP chain

• Solve the following equations

$$\begin{aligned} \frac{d\mathbf{H}}{dt} &= -2\lambda_{pp} \frac{\mathbf{H}^2}{2} - \lambda_{pd} \mathbf{HD} + 2\lambda_{33} \frac{(\mathbf{He}^3)^2}{2} - \lambda_{17} \mathbf{HBe^7} - \lambda_{17}' \mathbf{HLi^7} \\ \frac{d\mathbf{D}}{dt} &= \lambda_{pp} \frac{\mathbf{H}^2}{2} - \lambda_{pd} \mathbf{HD} \\ \frac{d\mathbf{He}^3}{dt} &= \lambda_{pd} \mathbf{HD} - 2\lambda_{33} \frac{(\mathbf{He}^3)^2}{2} - \lambda_{34} \mathbf{He^3} \mathbf{He^4} \\ \frac{d\mathbf{He^4}}{dt} &= \lambda_{33} \frac{(\mathbf{He}^3)^2}{2} - \lambda_{34} \mathbf{He^3} \mathbf{He^4} + 2\lambda_{17} \mathbf{HBe^7} + 2\lambda_{17}' \mathbf{HLi^7} \\ \frac{d\mathbf{Be^7}}{dt} &= \lambda_{34} \mathbf{He^3} \mathbf{He^4} - \lambda_{e7} n_e \mathbf{Be^7} - \lambda_{17}' \mathbf{HBe^7} \\ \frac{d\mathbf{Li^7}}{dt} &= \lambda_{e7} n_e \mathbf{Be^7} - \lambda_{17}'' \mathbf{HLi^7} \end{aligned}$$

CNO cycle

• If CNO exist, they work as catalysts.

CNO cycle

$$\begin{aligned} \frac{d\mathbf{C}^{12}}{dt} &= -\lambda_{p12}\mathbf{H}\mathbf{C}^{12} + \alpha\lambda_{p15}\mathbf{H}\mathbf{N}^{15} = -\frac{\mathbf{C}^{12}}{\tau_{12}} + \alpha\frac{\mathbf{N}^{15}}{\tau_{15}} \\ \frac{d\mathbf{N}^{13}}{dt} &= \frac{\mathbf{C}^{12}}{\tau_{12}} - \frac{\mathbf{N}^{13}}{\tau_{\beta}(13)} - \frac{\mathbf{N}^{13}}{\tau_{p}(\mathbf{N}^{13})} \qquad \tau_{\beta}(\mathbf{N}^{13}) = 870 \text{ sec} \\ \frac{d\mathbf{C}^{13}}{dt} &= \frac{\mathbf{N}^{13}}{\tau_{\beta}(13)} - \frac{\mathbf{C}^{13}}{\tau_{13}} \\ \frac{d\mathbf{N}^{14}}{dt} &= \frac{\mathbf{C}^{13}}{\tau_{13}} - \frac{\mathbf{N}^{14}}{\tau_{14}} + \frac{\mathbf{O}^{17}}{\tau_{17}} \\ \frac{d\mathbf{O}^{15}}{dt} &= \frac{\mathbf{N}^{14}}{\tau^{14}} - \frac{\mathbf{O}^{15}}{\tau_{\beta}(15)} - \frac{\mathbf{O}^{15}}{\tau_{p}(\mathbf{O}^{15})} \qquad \tau_{\beta}(\mathbf{O}^{15}) = 178 \text{ sec} \\ \frac{d\mathbf{N}^{15}}{dt} &= \frac{\mathbf{O}^{15}}{\tau_{\beta}(15)} - \frac{\mathbf{N}^{15}}{\tau_{15}} \\ \frac{d\mathbf{O}^{16}}{dt} &= \gamma \frac{\mathbf{N}^{15}}{\tau_{15}} - \frac{\mathbf{O}^{16}}{\tau_{16}} \\ \frac{d\mathbf{F}^{17}}{dt} &= \frac{\mathbf{O}^{16}}{\tau_{16}} - \frac{\mathbf{F}^{17}}{\tau_{\beta}(17)} - \frac{\mathbf{F}^{17}}{\tau_{p}(\mathbf{F}^{17})} \qquad \tau_{\beta}(\mathbf{F}^{17}) = 95 \text{ sec} \\ \frac{d\mathbf{O}^{17}}{dt} &= \frac{\mathbf{F}^{17}}{\tau_{\beta}(17)} - \frac{\mathbf{O}^{17}}{\tau_{17}} \end{aligned}$$

CNO cycle

- Beta decay is faster than proton capture
- Beta decay and ¹⁵N attain equilibrium.
- Branching ratio to ON cycle is small.
- Split CNO cycle to CN and ON cycle.

dC^{12} _	C ¹	12 14
dt	τ_1	$2 \tau_{14}$
dC^{13}	C12	C13
dt	$ au_{12}$	$ au_{13}$
dN^{14}	C ¹³	N ¹⁴
dt	τ_{13}	T14

CN cycle abundance evolution

 At t -> infinity, most of nucleus are converted to ¹⁴N.

PP chain vs. CNO cycle

Stellar interior

• PP chain

He burning

• ⁸Be is in equilibrium $\alpha + \alpha \longleftrightarrow$ ⁸Be

$$n(^{8}\text{Be}) = n_{\alpha}^{2}\omega f \frac{h^{3}}{\left(2\pi\mu k_{\text{B}}T\right)^{3/2}} \exp\left(-\frac{E_{r}}{k_{\text{B}}T}\right)$$

• ⁸Be + α is also close to equilibrium

$$n(^{12}C^*) = n(^{8}Be)n_{\alpha}f \frac{h^3}{(2\pi\mu k_{\rm B}T)^{3/2}} \exp\left(-\frac{E_r}{k_{\rm B}T}\right)$$

• The decay rate of ${}^{12}C^* \rightarrow {}^{12}C + \gamma$ is $\frac{\Gamma_{\gamma}}{\hbar}$

$$r_{3\alpha \to {}^{12}\text{C}} = \frac{n({}^{12}\text{C}^*)\Gamma_{\gamma}}{\hbar} = 9.8 \times 10^{-54} \frac{n_{\alpha}^3}{T_8^3} f \exp\left(-\frac{42.94}{T_8}\right)$$
$$\varepsilon_{3\alpha} = 3.9 \times 10^{11} \frac{\rho^2 X_{\alpha}^3}{T_8^3} f \exp\left(-\frac{42.94}{T_8}\right)$$

Nucleosynthesis during He burning

- ¹²C(α,γ)¹⁶O
 - Important reaction affects subsequent burning stage
- The reaction rate is not well determined.

• And probably ${}^{16}O(\alpha,\gamma){}^{20}Ne$

The Sun after 5Gyr

H is exhausted at the center

The white dwarf cools with time.

The envelope will be a planetary nebular and the core will be a white dwarf.

The Sun expands to be a redgiant star.

He core burning starts and the Sun becomes a horizontal branch star.

The Sun expands to be an asymptotic redgiant branch star.

Planetary nebular and white dwarfs

Advanced burning stage

• C burning ($\epsilon \sim 2.6 \times 10^{40} \rho X_C^2 \lambda_{C,C} \text{ erg/g/s}$)

Reaction Channel	Q, Mev
$\mathrm{C}^{12} + \mathrm{C}^{12} \rightarrow \mathrm{Mg}^{24} + \gamma$	13.930
$\rightarrow \mathrm{Na^{23}} + p$	2.238
$\rightarrow \mathrm{Ne}^{20} + \alpha$	4.616
$\rightarrow Mg^{23} + n$	-2.605
$\rightarrow O^{16} + 2\alpha$	-0.114

• O burning ($\epsilon \sim 2x10^{40} \rho X_0^2 \lambda_{0,0} \text{ erg/g/s}$)

Reaction Channel	Q, Mev
$O^{16} + O^{16} \rightarrow S^{32} + \gamma$	16.539
$\rightarrow P^{31} + p$	7.676
$\rightarrow S^{31} + n$	1.459
$\rightarrow \mathrm{Si}^{28} + \alpha$	9.593
$\rightarrow Mg^{24} + 2\alpha$	-0.393

Equilibrium (at high temperature)

- A + B <-> C + D
- The reaction releases energy of Q
- Chemical potential of ideal gas

$$\mu = -k_{\rm B}T \ln\left[\left(\frac{mk_{\rm B}T}{2\pi\hbar^2}\right)^{3/2}\frac{V}{N}\right] + \phi_{\rm r}(T)$$

• Equilibrium condition

$$\mu_{\rm A} + \mu_{\rm B} + Q = \mu_{\rm C} + \mu_{\rm D}$$
Saha equation

$$\frac{n_{\rm A}n_{\rm B}}{n_{\rm C}} = \frac{g_{\rm A}g_{\rm B}}{g_{\rm C}} \left(\frac{k_{\rm B}T}{2\pi\hbar^2} \frac{m_{\rm A}m_{\rm B}}{m_{\rm C}}\right)^{3/2} \exp\left(-\frac{Q}{k_{\rm B}T}\right)$$

• After repeated action,

$$\frac{n_p^Z n_n^{(A-Z)}}{n(A,Z)} = \frac{2^A}{g(A,Z)} A^{-3/2} \theta^{A-1} \exp\left(-\frac{Q(A,Z)}{k_{\rm B}T}\right)$$
$$Q(A,Z) = c^2 \left[Zm_p + (A-Z)m_n - m(A,Z)\right] \qquad \theta = \left(\frac{2\pi m_p k_{\rm B}T}{h^2}\right)^{3/2}$$

Here, the change of Ye is ignored.

Homework

Nuclear Statistical Equilibrium

Fig. 7-9 The dominant nuclear constituent in a gas in nuclear statistical equilibrium when $\bar{Z}/\bar{N} = 1$.

Binding energy of nucleus

or of massive star

Si

Onion-like structure

No nuclear energy can be extracted from Fe.

Core collapse

Proto neutron star is formed. Surrounding matter continues falling.

Infalling matter **bounces**.

Supernova explosions

Supernova explosion

The stellar materials are ejected as a supernova.

Supernovae

<u>L~10⁴²erg/s~10⁹L</u>.

Energy source Shock heating ⁵⁶Ni-⁵⁶Co radioactive decay

Huge energy E_K~10⁵¹erg

Gravitational energy $GM^2_{\odot}/R_{NS} \sim 10^{53} erg$ Nuclear energy $\Delta(^{12}C \rightarrow ^{56}Ni)M_{\odot} \sim 10^{51} erg$

... © Anglo-Australian Observatory

SN1987A

Stellar fates

Stellar fates depend on their masses

Abundance distribution at the presupernova stage

Shock wave in the stellar mantle

Radiation energy is dominant after the shock wave and radiation are fully coupled with matter.

- Temp. behind the shock
 - radiation dominated

$$E = aT^4 \frac{4\pi R^3}{3}$$

$$\frac{T}{10^9 \text{K}} = 13 \left(\frac{E}{10^{51} \text{erg}}\right)^{1/4} \left(\frac{R}{10^3 \text{km}}\right)^{-3/4}$$

- Short hydrodynamical timescale
 - Slightly higher temp. is required

Burning stage	Temperature
Explosive C & Ne burning	2x10 ⁹ K
Explosive O burning	3-4x10 ⁹ K
Incomplete Si burning (QSE)	4x10 ⁹ K
Complete Si burning (NSE)	5x10 ⁹ K

Heavier elements are synthesized at higher T layer (i.e., in the inner layer).

Stellar structure and nucleosynthesis

Varieties of supernovae

- Core-collapse SNe (CCSNe)
 - Explosions of massive stars (M>8 M_{\odot})
 - Gravitational energy
- Type Ia SNe (SNe Ia)
 - Explosions of accreting white dwarf
 - Thermonuclear energy
- Pair-instability SNe (PISNe)
 - Explosions of very massive stars (M~140-300 M_{\odot})
 - Thermonuclear energy

Nucleosynthesis in CCSNe

- Explosion of massive stars
 - M_{ms}>8M_☉, R~10⁵⁻⁹km
 - E~10⁵¹⁻⁵²erg, M_{ej} ~1-30 M_{\odot} , M(Fe)~0.1 M_{\odot}
- Gravitational energy
 - ~1% of released $E_{grav} = GM_{\odot}^2/R_{NS} \sim 10^{53} erg$
- Large amount of various heavy elements
- Interval from star formation: ~2-20Myr
 - First metal-enrichment in the universe is made by CCSNe.

Abundance pattern of CCSN yield

Nucleosynthesis in SNe Ia

- Explosion of white dwarf
 - M_{ms} <8 M_{\odot} , Compact (R~10³km)
 - E=10⁵¹erg, M_{ej} =1.34 M_{\odot} , M(Fe)~0.9 M_{\odot}
- Thermonuclear explosion
 - $E_{exp} = E_{nuc} (+ E_{grav}) = \Delta (^{12}C \rightarrow ^{56}Ni)M_{\odot} \sim 10^{51} erg$
- Large amount of ⁵⁶Ni(Fe) and Fe-peak elements
- Interval from star formation: ~Gyr
 - The contribution delays comparing with CCSNe.

Nucleosynthesis in SNe Ia

Nucleosynthesis in SNe Ia

Nomoto + 84

Abundance pattern of SN Ia yield

Nucleosynthesis in PISNe

- Explosion of very massive star
 - M_{ms} =140-300 M_{\odot} , R~10⁹km, low entropy
 - Such massive stars can survive only at small Z.
 - E~10⁵¹⁻⁵³erg, M_{ej} ~100 M_{\odot} , M(Fe)~1-10 M_{\odot}
- Thermonuclear explosion
 - $E_{exp} = E_{nuc} (+ E_{grav})$ = $\Delta ({}^{16}O \rightarrow {}^{28}Si, {}^{56}Ni)(10-100M_{\odot}) \sim 10^{52-53}erg$
- Large amount of ⁵⁶Ni(Fe) and even-Z elements
- Interval from star formation: ~Myr

Explosion mechanism of PISNe

Mass dependence of PISN yields

Heger&Woosley02

Abundance pattern of PISNe

Abundance patterns of PISNe

Heger model (He core mass)

PISN: [Ca/Si] vs. [Mg/Si]

Synthesis of heavy elements

How are heavy elements produced?

Chart of the nuclides

Production process

s-process nucleosynthesis

- Secondary process (seed nuclei are required)
 - no s-process in metal-free era
- Stable n-cap. elements are synthesized.
 - up to ²⁰⁶Pb, ²⁰⁹Bi (largest Z among stable nuclei).
 - 3 peaks with n magic number
- Halflife of n: 10 min
 - Stable n source is required.

¹³C + ⁴He \rightarrow ¹⁶O + n (He shell burning: T>8x10⁷K) ²²Ne + ⁴He \rightarrow ²⁵Mg + n (He core burning: T>2.5x10⁸K)
r-process nucleosynthesis

- Primary process
- n(n)~10²⁰⁻³⁰ cm⁻³, s/k_B~100, τ_{nuc} ~10^{-2~-6} sec
- It passes through unstable n-rich nuclei and synthesizes large amount of unstable nuclei with n magic number, that decay to stable nuclei via βdecay.
- The 3 peaks shift to smaller Z compared to the sprocess elements.
- Products: Ag, Pt, Au, etc.

r-process nucleosynthesis

r-process elements

• Universality

Sneden+08

n-capture sites

- s-process site
 - Not metal-free (seed nuclei is required.)
 - AGB stars
 - n(n)~10⁷ cm⁻³, τ_{nuc}~10⁴⁻⁵yr
 - Rotating massive stars (spinstar)

At least, massive stars can produce light s-elements.

• r-process site

- High entropy & low electron fraction
- Core-collapse supernovae?
- Neutron star mergers?

s-process elements

- AGB stars
- 13C(a,n)16O
- 22Ne(a,n)25Mg

Recent progress r-process site

- Neutron star merger
- Gravitational wave
- GW170817

LIGO

A firm evidence of **synthesis of Lanthanoid elements** has been found.

It is not clear whether the neutron star is the dominant origin of rprocess elements or not.

Utsumi, Tanaka, NT+17

Chemical evolution

Chemical evolution

- Stars and supernovae evolve universe from metalfree to solar abundance.
- The chemical evolution of universe is studied including star formation, feedback, and metalenrichment due to stars and supernovae.
- There are several methods:
 - 1-zone
 - p(t, [**a**/Fe], [Fe/H])
 - Chemodynamical simulation
 - p(x, v, t, [**α**/Fe], [Fe/H])
- Observations
 - SEGUE, APOGEE, LAMOST, GALAH, Kepler, Gaia, ...

Chemical evolution

Chemical evolution is recorded in abundance pattern of metal-poor stars.

Metallicity increases with time,

thus metallicity is a time indicator in the mixed universe. [Fe/H]= $\log(Fe/H)$ - $\log(Fe/H)_{\odot}$

Metal-poor star

Stars are

formed in the early universe and have small amount of metals.

Discoveries of metal-poor stars

Core-collapse supernova yields

Nomoto, Kobayashi, NT 13

 $\log Z/Z_{\odot}$

Chemical evolution of elements [X/Fe] **CCSN** [α/Fe] +0.5 SN la 0 **SN** la [Fe/H] -3 -1 **CCSN** [Odd/Fe]

Nomoto, Kobayashi, NT 13

SN+HN+SN Ia+AGB SN+HN+SN Ia

Chrono-chemo-dynamical simulation

Kobayashi+07

2 25 3 35 4	4.5 5 5.5	8 45 kolu	-4	-3	-2	-1	Inp 2/2
Star	t = 0	20 Gyr, 2	- 10.7	2			Gas
	$t = -0^{-1}$	25 Gvr_z	= 15.7	2			

Milky Way simulation Kobayashi & Nakasato 2011

Milky Way simulation Kobayashi & Nakasato 2011

ā

Homework – 1

• Draw several lines of constant masses on the T_c- ρ_c plane for different masses with adopting gas and electron degenerate pressure (T=0K), X(¹²C)=X(¹⁶O)=0.5, and ϕ_N = 16.15.

$$P = \frac{\rho kT}{\mu m_p} + P_e^{(0)} \qquad M = \left(\frac{1}{4\pi G^3} \frac{P_c^4}{\rho_c^3}\right)^{1/2} \varphi_N$$

$$P_e^{(0)} = \frac{\pi}{3} \left(\frac{m_e c}{h}\right)^3 m_e c^2 f(x) \qquad \log^{\mathsf{T_c}} f(x) = x(2x^2 - 3)(x^2 + 1)^{1/2} + 3\sinh^{-1}(x)$$

$$x = \frac{p_F}{m_e c}$$

log pr

Homework – 2

- Derive the dominant isotopes between ^{56}Ni and alpha in NSE as functions of T and ρ

$$\frac{N_{\alpha}^{14}}{\mathrm{Ni}^{56}} = \frac{4^{21}}{56^{\frac{2}{3}}} \theta^{13} \exp \frac{14Q(\alpha) - Q(\mathrm{Ni}^{56})}{kT}$$

$$Q(A, Z) = c^{2} \left[Zm_{p} + (A - Z)m_{n} - m(A, Z) \right]$$

$$\theta = \left(\frac{2\pi m_p k_{\rm B} T}{h^2}\right)^{3/2}$$

Recent topics

Multi-messenger astronomy

Gravitational wave

Detection of GW150914

Neutron star merger

GW170817

The component masses is in the range 1.17–1.60 M_{\odot} , with the total mass of the system $2.74^{+0.04} _{-0.01} M_{\odot}$.

GW170817

Localization with 3 detectors are as narrow as 28deg² for a 90% credible region.

Where is a GW source?

J-GEM17btc (SSS17a/DLT17ck/AT2017gfo)

Off-center transient located in NGC4993

Stacked

2017-08-19

Difference

NT+18; Utsumi, Tanaka, NT+17

Day 7.17-7.70

Light curve different from SNe

Tominaga+; Utsumi+; Tanaka+

Decline slowly in red bands

Tominaga+; Utsumi+; Tanaka+

Such an event is predicted

Tominaga+; Utsumi+; Tanaka+

Why is the kilonova red?

Flame reaction

Lanthanoids give red colors.

https://www.juku.st/info/entry/157

First evidence of synthesis of Lanthanoids in neutron star mergers

Confirmed elements in kilonova spectra

Domoto+23

Abundance pattern of AT2017gfo

50

Û

100

A

150

200
PISN mass gap

Hanford

0.60

0.60

PISN mass gap

Heger & Woosley 02

Dependence of 12C(a,g)16O rate

Farmer+20;Costa+21; Kawashimo, ..., NT+24

Abundance of first galaxies

First galaxies at high redshifts have 1. High metallicity of 6-30% of the Sun 2. High N abundance compared to C (and O)

An extreme condition is required to explain the high N abundance.

 Only the winds of rotating Wolf–Rayet stars that end up as a direct collapse can explain the high N/O ratio.

Watanabe, ..., NT+23

Fluorine detection at z=4.4

Fig. 2 | ALMA spectrum of NGP-190387. a, Spectrum in band 6 without continuum subtraction. The positions of emission and absorption lines are indicated by labelled vertical lines. For comparison, the Arp 220 spectrum⁷², shifted and scaled by arbitrary units, is also displayed (in grey). The frequency gap is due to the separation of the ALMA spectral windows. By inspection, the plot of the flux density without continuum subtraction shows that the absorption line is not saturated. By integrating the signal-to-noise ratio (S/N) over the absorption line, we obtain an S/N = 8. b, Observed HF(1-0) line profile (ν_{rest} = 1,232.48 GHz; ref.⁷³), continuum subtracted. The spectral resolution is 40 km s⁻¹, with the velocity scale centred on the HF(1-0) transition at *z* = 4.420. The single- and double-component Gaussian fits are displayed, with dashed lines indicating the individual components of the double-Gaussian fit. The error bars show the uncertainties on the flux measurement given by imfit. The bottom panel shows the residuals (data – model) in units of millijansky in black for the single-Gaussian fit and in red for the double-Gaussian fit. In these two panels, the flux density is not corrected by the magnification factor ($\mu \approx 5$).

Franco+21

Fluorine synthesis

- Fluorine can be synthesized via
 - He convective shell (Limongi & Chieffi 18) $^{14}N(\alpha, \gamma)^{18}F(\beta^+)^{18}O(p, \alpha)$
 - Neutrino reaction (Yoshida+08)
 - N-rich H layer (Shibata+ in prep.)

 $^{14}N(p,\gamma) \, {}^{15}O(\alpha,\gamma) \, {}^{19}Ne(\beta+) \, {}^{19}F$

 20 Ne($\nu, \nu' p$) 19 F.

 $^{15}N(\alpha, \gamma)^{19}F$

Enhanced mass loss

Enhanced mass loss

NASA's Goddard Space Flight Center Video courtesy of ESA/Hubble/L. Calcada

https://svs.gsfc.nasa.gov/114

SN2013fs - Confined CSM

Yaron+17

Brightening before the explosion

Jacobson-Galán et al. (2022)

What makes the confined CSM?

Enhanced mass loss just prior to the explosion

Origins?

- Pulsations of red supergiants (Yoon & Cantiello 10)
- Core neutrino emission (Moriya 14)
- Near-surface energy deposition (Quataert + 16)
- Nuclear flash (Woosley & Heger 15)

Oxygen shell flash

- 5x10⁴⁹ ergs (10% of binding energy of the envelope) is released at the short period.
- The flash takes place when $\varepsilon_{\rm OO} > \varepsilon_{
 m v}$.

Chiba+ in prep.

Summary

- The evolution of stars and the Universe are determined by nuclear reactions.
- Multi-messenger astronomy finds the synthesis of Lanthanoids in NSMs and a black hole merger with masses in a PISN mass gap.
- Observations of distant galaxies find high N abundance and high F abundance.
- An enhanced mass loss prior to the collapse is observed. An O shell flash might explain the enhanced mass loss.