Deep Learning for high energy nuclear physics

Long-Gang Pang 庞龙刚 华中师范大学粒子物理研究所 夸克与轻子物理教育部重点实验室

Yann LeCun

Deep learning is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization

DL: Neural Network with multi hidden layers

Loss functions

NLL loss in flow model

Normalizing flow:

NLL loss:

$$egin{aligned} \mathbf{z}_{i-1} &\sim p_{i-1}\left(\mathbf{z}_{i-1}
ight) \ \mathbf{z}_{i} &= f_{i}\left(\mathbf{z}_{i-1}
ight), \mathbf{z}_{i-1} = f_{i}^{-1}\left(\mathbf{z}_{i}
ight) \ p_{i}\left(\mathbf{z}_{i}
ight) &= p_{i-1}\left(f_{i}^{-1}\left(\mathbf{z}_{i}
ight)
ight) \left|\detrac{df_{i}^{-1}}{d\mathbf{z}_{i}}
ight| \ & ext{Loss} &= -\log p(x) \end{aligned}$$

NLL loss in RL

 S_t

 r_t

Agent

Environment

 a_t

$$heta = heta - lpha rac{1}{m} \sum_{i=1}^m
abla_ heta l_i$$

Example: $L(heta)= heta^2$, simple 1D gradient descent , heta= heta-lpha imes2 heta ,

How to escape local minimum

- **1. Yann Lecun:** $P(minimum) = 0.5^n$, more saddle points
- 2. SGD introduces disturbance
- 3. Momentum helps to escape local minimum or saddle point

Momentum

Adaptively chaning learning rate

$$egin{aligned} g_t &=
abla_ heta l, \quad G &= \sum_t g_t^2, \ heta &= heta - rac{lpha}{\sqrt{G+\epsilon}} \cdot g_t. \end{aligned}$$

- Apply smaller Ir to the big $\partial_{\theta_i} l$ direction
- SGD + Momentum + Adaptive LR \rightarrow Adam

Auto Differentiation

• Forward Mode

Introduce dual numbers: $x \rightarrow x + \dot{x} \mathbf{d}$ where $\mathbf{d}^2 = 0$

$$(x + \dot{x}\mathbf{d}) + (y + \dot{y}\mathbf{d}) = x + y + (\dot{x} + \dot{y})\mathbf{d}$$

$$(x + \dot{x}\mathbf{d}) - (y + \dot{y}\mathbf{d}) = x - y + (\dot{x} - \dot{y})\mathbf{d}$$

$$(x + \dot{x}\mathbf{d}) * (y + \dot{y}\mathbf{d}) = xy + (x\dot{y} + \dot{x}y)\mathbf{d}$$

$$\frac{1}{x + \dot{x}\mathbf{d}} = \frac{1}{x} - \frac{\dot{x}}{x^2}\mathbf{d} \qquad (x \neq 0)$$

Forward mode for $\ R^1 o R^n$

Reverse mode for $\ R^n o R^1$

• Reverse Mode

$$egin{aligned} ext{step 2}: ar{w} = ar{w} + ar{b} rac{\partial b}{\partial w} \ ext{step 3}: ar{w} = ar{w} + ar{c} rac{\partial c}{\partial w} \end{aligned}$$

Tools for AutoDiff

O PyTorch

... training deep models is a sufficiently difficult task that most algorithms are strongly affected by the choice of initialization. The initial point can determine whether the algorithm converges at all, with some initial points being so unstable that the algorithm encounters numerical difficulties and fails altogether.

Deep Learning, 2016

Initialization methods

For Tanh activation function, the Xavier (Glorot) initialization is widely used.

For Sigmoid activation, one may use normalized Xavier initialization,

weights $\sim N[0,\sigma]$

where $\sigma = \sqrt{6/(n+m)}$, where n is the number of input neurons and m is the number of output neurons of that layer.

For **ReLU** activation function, one should use **He** initialization, e.g., in tensorflow,

$$ext{weights} \sim ext{U}\left[-\sqrt{rac{6}{n}},\sqrt{rac{6}{m}}
ight],$$

where U stands for uniform distribution,

What has been learned (Global interpretation)

Olah, et al., "Feature Visualization", Distill, 2017.

shallow layers

deep layers

Local interpretation

- Ablation studies: LIME or Prediction Difference Analysis. M. Tulio Ribeiro, et. al. "Why should I trust you?"
- Class activation map: map the deep layers to the input image, look for the most important region for decision making. BoLei Zhou, et. al. "Learning Deep Features for discriminative localization"
- Layer-wise relevance propagation: set the relavance of the output layer to 1, propagate the relevance to the input data, to look for the most important region for decision making.

DL nuclear physics across energy scales

- Deep generative models (such as normalizing flow and the diffusion model) have been used to sample Field Configureations in Lattice QCD
- Deep learning is widely used to solve inverse problems of HIC to study the EoS of hot QCD matter, the phase transition, the transport coefficients eta/s, ...
- Deep neural network is used to represent the manybody wave function of nucleus, to solve variational problems in ab initio calculations
- Deep learning is used to solve inverse problems of HIC to study the nuclear structure, for instance, the nuclear deformation, neutron skin, alpha cluster and short range correlation
- > DL for nuclear liquid droplet model...

Generativive models: MC sampling

Similar to Box Muller algorithm

Flow-based generative models for Markov chain Monte Carlo in lattice field theory Albergo, Kanwar, Shanahan 1904.1207

Reviews

Collo	quium: Ma	achine learning in nuclear physics	High energy nuclear physics meets
Amber B Morten H	oehnlein, Markus Ijorth-Jensen, Ta	s Diefenthaler, Nobuo Sato, Malachi Schram, Veronique Ziegler, Cristiano nja Horn, Michelle P. Kuchera, Dean Lee, Witold Nazarewicz, Peter Ostro	Fanel Machine Learning
Orginos, Rev. Moc	Alan Poon, Xin-F d. Phys. 94 , 0310	Nian Wang, Alexander Scheinker, Michael S. Smith, and Long-Gang Pang 03 – Published 8 September 2022	Wan-Bing He (Fudan U., Shanghai and Fudan U.), Yu-Gang Ma (Fudan U., Shanghai and Fudan U.), Long-Gang Pang, Huichao Song (CCNU, Wuhan, Inst. Part. Phys. and Hua-Zhong Normal U., LQLP and Peking U.), Kai Zhou (Frankfurt U., FIAS) (Mar 12, 2023)
Article	References No Citing Articles PDF HTML Export Citation	e-Print: 2303.06752 [hep-ph]	
			HEPML-LivingReview
>	1 DOTT		A Living Review of Machine Learning for Particle Physics
	ABST	RACT	Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The
	Advances in machine learning methods provide tools that have broad applicability in scientific reso These techniques are being applied across the diversity of nuclear physics research topics, leading		goal of this accument is to provide a hearly comprehensive list of citations for those aeveloping and applying these approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as
Explor	ing QCD r	matter in extreme conditions with Machine	possible. Suggestions are most welcome. download review
Learning			The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of
Kai Zhou	(Frankfurt II Fl	AS) Lingviao Wang (Frankfurt II, FIAS) Long-Gang Pang (CCNIL)	paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.
Inst. Part.	Phys.), Shuzhe	Shi (Stony Brook U.)	should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next paper.
Mar 27, 2023			If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib. Reviews
1/6 page	c		 Modern reviews
e-Print: 23	303.15136 [hep	-ph]	 Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning [DOI] Deep Learning and its Application to LHC Physics [DOI]

Pb speed~99.9999% c

Au speed \sim 99.99% c

Explore QCD phase structure using HIC

Inverse problems in HIC

Theoretical model: relativistic hydro

Name of CLVisc:

CCNU-LBNL Viscous Hydro, CCNU = Central China Normal University
 A 3+1D viscous hydro parallized on GPU using OpenCL

Purpose: Describe the non-equilibrium space-time evolution of hot QCD matter **Feature: 100 times faster** than using a single core CPU.

L.G. Pang, Q. Wang and X. N. Wang, PRC 86 (2012) 024911 L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015 L.G. Pang, H.Petersen, XN Wang, PRC97(2018)no.6,064918

CLVisc for different EoS

eta/s = 0 Lattice QCD EoS (smooth cross over)

eta/s = 0 First order phase transition

eta/s = 0.08 Lattice QCD EoS

eta/s = 0.08 First order phase transition eta/s: shear viscosity / entropy density

Will the effect of EoS survive the dynamical evolution and exist in the final state hadrons?

statistical hadronization of (u,d,s) hadrons

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561 (2018) 321

$$n_i = (2s_i + 1) 4 \pi \int p^2 \left[e^{\left(\sqrt{p^2 + m_i^2} - \mu_i
ight)/T} \pm 1
ight]^{-1} dp$$

 At LHC, equal amounts of matter and anti-matter are produced
 At BES region, more protons than anti protons

CLVisc vs experimental data

Longitudinal momentum distribution

0.5

0.0

1.0

1.5

p_T [GeV]

2.0

2.5

3.0

p_T [GeV]

Challenges

Fig from S. Bass QM2017 (Bayesian method)

Model Parameter:

(1) Multiple parameters entangle with multiple observables

(2) Different parameter combinations describe the same data

Bayesian analysis QCD EoS

The c_s^2 is parameterized as a function of energy density in the following,

$$c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2}$$
(2.12)

where $X_0 = \sqrt{12}RX'c_s(\epsilon_h)$, $x \equiv \ln \frac{\epsilon}{\epsilon_h}$, ϵ_h is the energy density at T = 165 MeV, R and X' are the two parameters in the EoS to be determined. Randomly choosing R and X' from the range -0.9 < R < 2 and 0.5 < X' < 5 generate the unconstrained EoS that varies in a large region between $c_s^2 = 0.05$ and $c_s^2 = 0.33$, as shown in Fig. 2.4-a. This corresponds to the a priori distribution of c_s^2 parameters together with other 12 parameters in the model $P(\theta)$.

Likelihood:

$$P(D|\theta) = \prod_i \exp\left(-(z_i(\theta) - z_{i,\exp})^2/2\right)$$

Posterior: $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$

S. Pratt, E. Sangaline, P. Sorensen, H. Wang, PRL. 114 (2015) 202301.

EoS for different phase transition types

baryon chemical potential μ_B

Determine nuclear phase transitions

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.

Determining nuclear deformation

L.-G. Pang, K. Zhou and X.-N. Wang, arXiv:1906.06429

Data representation

Spinodal vs Maxwell 1st order phase transition

J. Steinheimer, L.G. Pang, K. Zhou, V. Koch and J. Randrup, JHEP 12 (2019) 122

Capture more local correlations

Dynamical Edge Convolution Network

Fig. 2. Left: Computing an edge feature, e_{ij} (top), from a point pair, x_i and x_j (bottom). In this example, h_{Θ} () is instantiated using a fully connected layer, and the learnable parameters are its associated weights. **Right**: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

Looking for self similarity in momentum space

Self similarity, scaling invariance

PLB 827(2022) 137001, Y.-G. Huang, L.-G. Pang, X.F. Luo and X.-N. Wang

off-diagonal = misclassified

Protons, Predicted labels

PLB 822 (2021) 136669, Y.J Wang, F.P. Li, Q.F. Li, H.L. L["]u, and K. Zhou

Auto Encoder for order parameter

PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

Nuclear liquid-gas phase transition with machine learning

Rui Wang^{1,2,*} Yu-Gang Ma,^{1,2,†} R. Wada,³ Lie-Wen Chen^{9,4} Wan-Bing He,¹ Huan-Ling Liu,² and Kai-Jia Sun^{3,5}

$(\mu_{BC}, \alpha_{\text{diff}}, w, \rho) \mapsto P(T, \mu_B) \mapsto \{\text{acceptable, unstable, acausal}\}.$

4 parameters from 3D Ising model Q

QCD EoS

Lables for classification

D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta, PRC 107, 054911

Active learning procedure

D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta, PRC 107, 054911

Quasi particle picture of QCD EoS

screened, dressed, regularized, quasi particle

DL For Quasi Particle Mass

FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023

$$\ln Z(T) = \ln Z_g(T) + \ln Z_{u,d}(T) + \ln Z_s(T),$$

Fermi-Dirac distributions,

$$\ln Z_g(T) = -\frac{16V}{2\pi^2} \int_0^\infty p^2 dp$$

$$\ln \left[1 - \exp\left(-\frac{1}{T}\sqrt{p^2 + m_g^2(T)}\right) \right], \quad (2)$$

$$\ln Z_{q_i}(T) = +\frac{12V}{2\pi^2} \int_0^\infty p^2 dp$$

$$\ln \left[1 + \exp\left(-\frac{1}{T}\sqrt{p^2 + m_{q_i}^2(T)}\right) \right], \quad (3)$$

quarks, $m_s(T, \theta_2)$ for strange quark and $m_g(T, \theta_3)$ for gluons, where θ_1 , θ_2 and θ_3 are the parameters in DNN shown in Fig. 1.

The resulting pressure and energy density are computed using the following statistical formulae,

$$P(T) = T\left(\frac{\partial \ln Z(T)}{\partial V}\right)_T,\tag{5}$$

$$\epsilon(T) = \frac{T^2}{V} \left(\frac{\partial \ln Z(T)}{\partial T}\right)_V,\tag{6}$$

FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023

Yuki Fujimoto, Kenji Fukushima, and Koichi Murase, PRD 98 (2018) 2, 023019

S. Soma, L. Wang, S. Shi, H. Stöcker, K. Zhou, PRD 107, (2023) 083028

DL for numerical relativity

Solving Einstein equations using deep learning

Zhi-Han Li¹, Chen-Qi Li¹, Long-Gang Pang^{1a} ¹Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}$$

$$L(\theta) = \frac{1}{N} \sum_{i=0}^{N} \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \kappa T_{\mu\nu} \right)^{2}$$

Y.L. Yang, P.W. Zhao, PRC 2023

Using PINN

Auto-Diff for parton fragmentation function

BW Zhang, HZ Zhang, in preparation

Jet quecnhing

Can Being Underwater Protect You From Bullets?

1 If the bullet is shot from an angle of 30 Degrees, then being underwater in the range of 3-5 feet (0.9-1.5 meters) can ensure safety from most guns.

Jet quenching in hot QGP

Nuclear EoS:
$$c_s^2 = \frac{dP}{d\epsilon} = \sin^2 \theta$$

Shear Viscosity: width of the shock wave

- Random production locations and propagating directions relative to collective flow
- Tilted by different path length and collective flow

L.M. Satarov, H. Stoecker, I.N. Mishustin, PLB 627 (2005) 64-70

If it is possible to locate the initial jets

DL assisted jet tomography (gamma-jet)

Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652

Training data: CoLBT(LBT + CLVisc)

$$p\partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^0)$$
$$\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)$$
$$j^{\nu} = \sum_{i} p_{i}^{\nu} \delta^{(4)}(x - x_{i}) \theta(p_{cut}^0 - p \cdot u)$$

LBT: YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902

CLVisc:

LG Pang, Q Wang, XN Wang, PRC 86 (2012) 024911

LG Pang, H Petersen, XN Wang, PRC 97 (2018) 6, 064918

XY Wu, GY Qin, LG Pang, XN Wang, PRC 105 (2022) 3, 034909

CoLBT:

W Chen, T Luo, SS Cao, LG Pang, XN Wang, PLB 777 (2018) 86-90

$$p_{1}\partial f_{1} = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4}) |M_{12\rightarrow 34}|^{2} (2\pi)^{4} \delta^{4}(\sum_{i} p^{i}) + inelastic$$
Medium-induced gluon(HT):

$$\frac{dN_{g}}{dzd^{2}k_{\perp}dt} \approx \frac{2C_{A}\alpha_{s}}{\pi k_{\perp}^{4}} P(z)\hat{q}(\hat{p} \cdot u)sin^{2}\frac{k_{\perp}^{2}(t-t_{0})}{4z(1-z)E}$$
Tracked partons:
Jet shower partons
Thermal recoil partons
Radiated gluons
Negative partons(Back reaction induced by energy-momentum conservation)

YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902

DL assisted jet tomography

Network predictions

True locations

Jet hadron correlation for selected events whose locations are constrained to specific regions using DL assisted jet tomography

Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652

Enhance the Diffusion Wake signal

Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652 Z Yang, T Luo, W Chen, LG Pang, XN Wang, PRL 130 (2023) 5, 052301

- Studying physics using HIC is a typical inverse problem
- DL builds nonlinear maps between final state observations and physical properties of nuclear matter
- Deep neural networks are widely used as varational functions that are learned through training
- The derivatives of the varational function can be computed with machine precision using auto-diff