

1

DIRECT NUCLEAR REACTIONS EXPERIMENT

Alexandre Obertelli, TU Darmstadt

OUTLINE

- Introduction to direct reactions
- Single-particle energies and spectroscopic factors
- Observables and non observables
- Nucleon transfer reactions
- Optical potentials
- Instrumentation for transfer reactions
- Quasifree scattering
- Nucleon removal induced from light-ion target
- Instrumentation for quasifree scattering

MISSING MASS METHOD

2

- Two-body kinematics: all information about the residue (4) can be obtained by measuring the momentum p3 and using the known mass m₃ of the second outgoing particle (3).
- The **excitation energy E***4 of particle (4) is given by:

$$E_4^* = \sqrt{E_4^2 - p_4^2 c^2} - m_{4,gs} c^2$$

with
$$E_4 = m_c c^2 + T_4$$
 total energy

• It can be expressed from energy conservation (EC) and momentum conservation (MC) $E_4 = T_1 + m_1 + m_2 - (T_3 + m_3)$ (EC) $p_4^2 = p_1^2 + p_3^2 - 2p_1p_3\cos(\theta_3)$ (MC) T₁,m₁,m₂,m₃ are known, T₃ (i.e. also p₃ after identification) and θ_3 are measured.

DIRECT NUCLEAR REACTIONS | NUCLEON TRANSFER REACTIONS

TRANSFER IN INVERSE KINEMATICS

- Momentum conservation implies a strong constrain on the kinematics of transfer reactions. Representation of (p,d)
 - $p_4^2 = p_1^2 + p_3^2 2p_1p_3\cos(\theta_3)$
- In **inverse kinematics**, the stripping and pickup reaction kinematics lead to a light target-recoil in the forward and backward hemisphere, respectively :
- one nucleon stripping at forward angles: (p,d), (d,³He), (d,t), (p,t)
- nucleon pickup at backward angles: (d,p), (t,p)
- Elastic scattering around 90 degrees: (p,p), (d,d)

Figure adapted from W. Catford, Lecture

• 3 stage telescopes:

- Si(Li): thickness 4.5 mm
- CsI crystals: thickness 40 mm
- Dedicated electronics: ADC (energy) and TDC (time) for each channel

MUST2 CHARGED-PARTICLE DETECTOR

- doubled-Sided Silicon detectors (DSSD): 128X, 128Y. Thickness 300 microns

01.08.2024

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

PARTICLE IDENTIFICATION (PID)

Mean energy loss via ionization: Bethe-Bloch formula

$$-\left\langle\frac{dE}{dx}\right\rangle \propto \frac{\rho Z q^2}{M\beta^2} \left[\ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I}\right) - \beta^2 - \text{corrections}\right]$$

 $E\Delta E \propto Mz^2$

- Low-energy particles do not punch through the first layer (no ΔE)
- In these cases, time of flight (ToF) and total kinetic energy (E) of are used to determine the mass M

$$E = \frac{1}{2}Mv^2 \propto \frac{M}{ToF^2}$$

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

AN EXAMPLE

- ¹⁴O pure beam, 18 MeV/n, 5. 10⁴ pps, SPIRAL (GANIL)
- Target: CD₂
- Reactions: (d,d), (d,³H) and (d,³He) MUST2 array
- VAMOS spectrometer for recoil identification

VAMOS

¹⁴O(d,t)¹³O

MUST2 Telescope

CD2 Target

Beam

Tracking Detector

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

¹⁴O(d,t)¹³O

MODEL UNCERTAINTIES

Entrance channel optical potential

Exit channel optical potential

Wave function

Reaction model

KD -20 +9 -7 🗖 +1 +1 CH89 -20 📃 -5 🛛 +3 -2 +1 BG +6 -19 📃 1+3 +5 +1 WAT -38 -5 🗌 -21 -17 🛄 -11 GDP08 -20 -7 🗖 +1 -+9 |+1 BG +2 +28 +2 +3 +1 WS (SLy4) -20 🗖 +9 -7 🗖 +1 +1 WS (SkX) -21 🗖 +23 -7 🗖 +2 -1| WS (SkM*) -20 -3 +9 -15 🗖 -2 WS (1.25 fm) +22 +1 +49 +61 -21 🗖 SCGF(1) -17 🗖 +7 -7 🗖 +39 +43SCGF(2) -17 🗖 -3 -21 +25 +39 CRC +1 -20 +9 -7 🗖 +1 DWBA +15 +1 -4 -24 -41 -40 -40 40 - 40 0 40 -40 Λ 40 0 40 -40 0 40 0 Deviation from mean value (%)

¹⁴O(d,³He)¹³N

Flavigny et al., PRC 97 (2018)

¹⁶O(d,t)¹⁵O

¹⁶O(d,³He)¹⁵N

¹⁴O(d,³He)¹³N*

γ-PARTICLE SPECTROSCOPY

C. A. Diget et al., J. Instr. 6 (2011)

- Compact silicon arrays combined with γ -ray spectrometers
- Ex. SHARC with TIGRESS Ge array at TRIUMF, Canada
- 25 Na(d,p γ) 26 Na at 5 MeV/n
- 3 challenges:
 - photon absorption
 - efficiency
 - particle identification

TECHNISCHE

UNIVERSITÄT

DARMSTADT

CHYMENE PURE HYDROGEN TARGET

- Ideal hydrogen target:
 - solid and thin
 - pure and windowless
- From fusion technology
- About 100 bars, 16 K
- Thickness down to 30 microns
- 5 10 mm radius
- R&D and prototype at CEA Saclay
 - Challenge:
 - vacuum
 - thickness homogeneity

Cible d'Hydrogène Mince pour l'Étude des Noyaux Exotiques (fr.) Thin hydrogen target for the study of exotic nuclei (en.)

Gillibert et al., EPJA 49 (2013)

TECHNISCHE

UNIVERSITÄT

DARMSTADT

TIME PROJECTION CHAMBERS (TPC)

- The spectroscopy of unstable nuclei might suffer from low luminosity.
- The use of a thick target might not be possible due to too large recoil energy loss inside the target
- TPCs used as active targets can lead to a gain in luminosity up to a factor 10

A TPC is composed of the following three key elements:
1) a drift region with a constant E field of about 100-300 V/cm,
2) an amplification region with an E field > 10 kV/cm,
3) a pad plane where induced signals are measured. The tracks are reconstructed in 3D based from drift time.

R. Shane et al., NIMA 784 (2015)

AT-TPC

Solenoidal Spectrometer Apparatus for Reaction Studies

Courtesy: D. Bazin, FRIB

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

PARTICLE IDENTIFICATION

- Magnetic rigidity From curvature of track & polar angle $B\rho = {p / q} = {\gamma M v \over q}$
- Energy loss
 From charge deposit along track
 Bethe-Bloch formula

$$-\left\langle\frac{dE}{dx}\right\rangle \propto \frac{\rho Z q^2}{M\beta^2} \left[\ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I}\right) - \beta^2 - \text{corrections}\right]$$

¹²BE+P AT 12 MEV/NUCLEON

۳ ³ He ²⁺	51.4
³ He ²⁺	51.4
P P	
n	34.2
Particle	T _{cyc} (ns)
	B=2T
Angle:	$\theta_{\sf cm}$
Energy:	E _{cm}
Part. ID:	m/q
Derived quant	ities
Energy:	E _{lab}
Position:	Z

T_{flight}=T_{ovo}

Measured quantities

Flight time:

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY **TRANSFER IN A SOLENOID WITH HELIOS**

TECHNISCHE

UNIVERSITÄT

DARMSTADT

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

ISS AT CERN

- Hexagonal Si-stripped array
- 1 mm segmentation along symmetry axis
- 500 mm of active silicon length

Courtesy: P. MacGregor, CERN

OUTLINE

- Introduction to direct reactions
- Single-particle energies and spectroscopic factors
- Observables and non observables
- Nucleon transfer reactions
- Optical potentials
- Instrumentation for transfer reactions
- Quasifree scattering
- Nucleon removal induced from light-ion target
- Instrumentation for quasifree scattering

PROTON QFS

- Quasifree scattering (QFS) to remove a nucleon from a nucleus in one step (sudden approximation)
- Incident energy and kinematical region chosen to minimise initial and final state interactions (ISI / FSI): 400 - 700 MeV/nucleon

- Binding energy of the nucleon inside the nucleus is small compared to the reaction energy: kinematics follows closely the free NN scattering kinematics ("quasi-free").
- For stable nuclei, electron-induced quasifree scattering is the most reliable proton-removal mechanism.

KINEMATICS

• In a free proton-proton scattering, by momentum and energy conservation, the two scattered protons in the laboratory verify ((1): beam, (2): target, (3,4): scattered particles):

 $T_3 + T_4 = T_1 = \text{constant}$

 $\phi_3 + \phi_4 = 180^{\circ}$ (in plane reaction)

These features are characteristic of the proton-nucleus quasi-free scattering kinematics

MISSING-MASS SPECTROSCOPY

- The excitation energy of the residual nucleus can be determined by **missing mass** from the measurement of **momenta of the two protons**
- Relativistic treatment is necessary.

$$\mathbf{q}_{\perp} = \mathbf{p}_{3\perp} + \mathbf{p}_{4\perp}$$

$$q_{\parallel} = \frac{(p_{3\parallel} + p_{4\parallel}) - \gamma \beta (M_A - M_{A-1})}{\gamma}$$

$$E_s = T_1 - \gamma (T_3 + T_4) - 2(\gamma - 1)m_p + \beta \gamma (p_{3\parallel} + p_{4\parallel}) - \frac{q^2}{2M_{A-1}}$$

PROTON SPECTROMETERS

Ex. Grand Raiden and LAS spectrometers at RCNP (Japan)

- Separation energy resolution:100 keV FWHM
- Grand Raiden has an intrinsic 1/37000 momentum resolution (16 keV) with a 5% momentum acceptance
- LAS spectrometer reaches 1/5000 momentum resolution with a 30% momentum acceptance

DWIA FORMALISM

• Quasifree scattering cross section (triple differential)

 $\frac{d\sigma_{\alpha\beta}}{dE_1 d\Omega_1 d\Omega_2} = \frac{(2\pi)^4}{\hbar v} F_{\text{kin}} |T_{\alpha}\beta|^2 \quad \text{with } F_{\text{kin}} \text{ kinematical factor}$

• Transition matrix for single-particle state $\varphi_{n\ell j}$ in Distorted Wave Impulse Approximation $T = \langle \chi_1 \chi_2 | t_{pN} | \chi_0 \varphi_{n\ell j} \rangle$

Impulse Approximation: one step, t_{pN} NN interaction in free space **Distorted Wave**: incoming proton and outgoing protons influences by optical potential

DWIA FORMALISM

Computer Physics Communications 297 (2024) 109058

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

PIKOE: A computer program for distorted-wave impulse approximation calculation for proton induced nucleon knockout reactions *

Kazuyuki Ogata^{a,b,*}, Kazuki Yoshida^c, Yoshiki Chazono^d

^a Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

^b Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

^c Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

^d RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan

 Other similar methods: Quantum Transfer to the Continuum (QTC, Sevilla group), eikonal (Bertulani, Texas A&M), Fadeev: no open code while theorists very collaborative

R3B AT GSI/FAIR

MINOS

DOUBLY MAGIC 78NI

DOUBLY MAGIC ⁷⁸NI

²³⁸U primary beam at 20 pnA, ⁷⁹Cu, 220 MeV/nucleon, intensity: 5 pps

Taniuchi et al., Nature (2019)

TECHNISCHE

UNIVERSITÄT

DARMSTADT

DOUBLY MAGIC 78NI

Taniuchi et al., Nature (2019)

EXAMPLE OF ALPHA CLUSTER QFS

- Kinematics is modified accordingly
- Very small cross sections (~100 pb)

- ⁸He beam at 156 MeV / nucleon
- Evidence of interacting four free neutrons

Duer et al., Nature 606 (2022)

TECHNISCHE

UNIVERSITÄT

DARMSTADT

EXAMPLE OF ALPHA CLUSTER QFS

- Quasifree scattering applicable to nuclei, such as alpha particles
- Kinematics is modified accordingly
- Very small cross sections (~100 pb)

- ⁸He beam at 156 MeV / nucleon
- Evidence of interacting four free neutrons

Duer et al., Nature 606 (2022)

TECHNISCHE

UNIVERSITÄT

DARMSTADT

LIGHT-ION INDUCED KNOCKOUT

- One-nucleon removal from light ion target (⁹Be, ¹²C) at incident energies above ~50 MeV/nucleon
- Experimentally easier to implement; routinely used at NSCL from 90s
- Eikonal formalism for cross section interpretation (see next slide)

EIKONAL FORMALISM

 $\psi(\vec{r}) = s(\vec{r})e^{i\vec{k}.\vec{r}}$ and $S(\vec{r}) = e^{-i\frac{\mu}{\hbar^2 k}\int_{-\infty}^{z} U(\sqrt{b^2 + z'^2})dz'}$ with $b = r_{\perp}$

TECHNISCHE UNIVERSITÄT DARMSTADT

Eikonal approximation: straight line

nucleon
$$b_n$$
 z

• Single-particle cross section $\sigma_{sp}(n\ell j) = \sigma_{sp}^{strip}(n\ell j) + \sigma_{sp}^{diff}(n\ell j)$

• Stripping cross section (the target is excited) $\sigma^{strip} = 2\pi \int_{0}^{\infty} b \, db \int d^{3}r \left| \phi_{n\ell j}(\vec{r}) \right|^{2} \left| S_{core}(\vec{b_{c}}) \right|^{2} (1 - \left| S_{nucl}(\vec{b_{n}}) \right|^{2})$

Core « survives » × Nucleon « adsorbed »

• Diffractive cross section (the target remains in its ground state)

$$\sigma_{diff} = 2\pi \int b \, db \left\langle \phi_0 \left\| S_{core} S_{nucl} \right\|^2 \left| \phi_0 \right\rangle - \left| \left\langle \phi_0 \left| S_{core} S_{nucl} \right| \phi_0 \right\rangle \right|^2$$

A. Navin et al., PRL 85 (2000)

I U Darmstadt | A. Obertelli | NUSYS 2024 | Direct Nuclear Reactions

EXAMPLE

A. Navin et al., PRL 85 (2000)

I U Darmstadt | A. Obertelli | NUSYS 2024 | Direct Nuclear Reactions

A. Gade et al., Phys. Rev. C 77 (2008) J.A. Tostevin and A. Gade, Phys. Rev. C 90 (2014)

STRENGTH QUENCHING

Aumann et al., Prog. Part. Nucl. Phys. (2021)

DIRECT NUCLEAR REACTIONS

END OF LECTURE 3

