

DIRECT NUCLEAR REACTIONS EXPERIMENT

Alexandre Obertelli, TU Darmstadt

OUTLINE

- Introduction to direct reactions
- Single-particle energies and spectroscopic factors
- Observables and non observables
- Nucleon transfer reactions
- Optical potentials
- Instrumentation for transfer reactions
- Quasifree scattering
- Nucleon removal induced from light-ion target
- Instrumentation for quasifree scattering

MISSING MASS METHOD DIRECT NUCLEAR REACTIONS | NUCLEON TRANSFER REACTIONS

• The **excitation energy E*4** of particle (4) is given by:

$$
E_4^* = \sqrt{E_4^2 - p_4^2 c^2} - m_{4,gs}c^2
$$

with
$$
E_4 = m_c c^2 + T_4
$$
 total energy

• It can be expressed from energy conservation (EC) and momentum conservation (MC) $E_4 = T_1 + m_1 + m_2 - (T_3 + m_3)$ (EC) $p_4^2 = p_1^2 + p_3^2 - 2p_1p_3\cos(\theta_3)$ (MC) T₁,m₁,m₂,m₃ are known, T₃ (i.e. also p_3 after identification) and θ_3 are measured.

DIRECT NUCLEAR REACTIONS | NUCLEON TRANSFER REACTIONS

• Momentum conservation implies a **strong constrain on the kinematics of transfer reactions.**

TRANSFER IN INVERSE KINEMATICS

• In **inverse kinematics,** the stripping and pickup reaction kinematics lead to a light target-recoil in the forward and backward hemisphere, respectively :

- one nucleon **stripping at forward angles**: (p,d), (d,³He), (d,t), (p,t)
- nucleon **pickup at backward angles**: (d,p), (t,p)

 $p_4^2 = p_1^2 + p_3^2 - 2p_1p_3\cos(\theta_3)$

• **Elastic scattering around 90 degrees**: (p,p), (d,d)

Figure adapted from W. Catford, Lecture

Representation of (p,d)

 \overline{B} B \rightarrow B

n

p d

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

MUST2 CHARGED-PARTICLE DETECTOR

- 3 stage telescopes:
	- doubled-Sided Silicon detectors (DSSD): 128X, 128Y. Thickness 300 microns
	- depleted semiconductors
	- Si(Li): thickness 4.5 mm
	- CsI crystals: thickness 40 mm
- Dedicated electronics: ADC (energy) and TDC (time) for each channel

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY PARTICLE IDENTIFICATION (PID)

• Mean energy loss via ionization: **Bethe-Bloch formula**

$$
-\left\langle \frac{dE}{dx} \right\rangle \propto \frac{\rho Z q^2}{M\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I} \right) - \beta^2 - \text{corrections} \right]
$$

 $E\Delta E \propto M_Z^2$

- Low-energy particles do not punch through the first layer (no $ΔE$)
- In these cases, time of flight (ToF) and total kinetic energy (E) of are used to determine the mass M

$$
E = \frac{1}{2} M v^2 \propto \frac{M}{T o F^2}
$$

(MeV)

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

AN EXAMPLE

- 14 O pure beam, 18 MeV/n, 5. 10⁴ pps, SPIRAL (GANIL)
- Target: $CD₂$
- Reactions: (d,d) , $(d,{}^{3}H)$ and $(d,{}^{3}He)$ MUST2 array
- VAMOS spectrometer for recoil identification

MUST2 Telescope

MODEL UNCERTAINTIES

Entrance channel optical potential

Exit channel optical potential

Wave function

Reaction model

Flavigny et al., PRC 97 (2018)

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY -PARTICLE SPECTROSCOPY

C. A. Diget et al., J. Instr. 6 (2011) G. L. Wilson et al., PLB 759 (2016)

- Compact silicon arrays combined with γ -ray spectrometers
- Ex. SHARC with TIGRESS Ge array at TRIUMF, Canada
- 25 Na(d,p γ)²⁶Na at 5 MeV/n
- 3 challenges:
	- photon absorption
	- efficiency
	- particle identification

TECHNISCHE UNIVERSITÄT **DARMSTADT**

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY CHYMENE PURE HYDROGEN TARGET

- Ideal hydrogen target: - solid and thin
	- pure and windowless
- From fusion technology
- About 100 bars, 16 K
- Thickness down to 30 microns
- $5 10$ mm radius
- R&D and prototype at CEA Saclay
- Challenge:
	- vacuum
	- thickness homogeneity

Cible d'Hydrogène Mince pour l'Étude des Noyaux Exotiques (fr.) Thin hydrogen target for the study of exotic nuclei (en.) Gillibert et al., EPJA 49 (2013)

TIME PROJECTION CHAMBERS (TPC)

- The spectroscopy of unstable nuclei might suffer from low luminosity.
- The use of a thick target might not be possible due to too large recoil energy loss inside the target
- **TPCs used as active targets** can lead to a **gain in luminosity up to a factor 10**

A TPC is composed of the following three key elements: 1) a **drift region** with a constant E field of about 100-300 V/cm, 2) an **amplification region** with an E field > 10 kV/cm, 3) a **pad plane** where induced signals are measured. The tracks are reconstructed in 3D based from **drift time**.

R. Shane et al., NIMA 784 (2015)

AT-TPC DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

Solenoidal Spectrometer Apparatus for Reaction Studies

Courtesy: D. Bazin, FRIB

 $2._C$

 1.5

 $B\rho(Tm)$

PARTICLE IDENTIFICATION DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

Magnetic rigidity From curvature of track & polar angle $B\rho = \frac{p}{q} = \frac{\gamma M v}{q}$ \overline{q}

Energy loss From charge deposit along track Bethe-Bloch formula

$$
-\left\langle \frac{dE}{dx} \right\rangle \propto \frac{\rho Z q^2}{M\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I} \right) - \beta^2 - \text{corrections} \right]
$$

Courtesy: D. Bazin, FRIB; DREB2024

 $10²$

Particle ID

Particle ID

12BE+P AT 12 MEV/NUCLEON DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

TECHNISCHE UNIVERSITÄT **DARMSTADT**

18

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

TRANSFER IN A SOLENOID WITH HELIOS

Measured quantities

DIRECT NUCLEAR REACTIONS | INSTRUMENTATION FOR SPECTROSCOPY

ISS AT CERN

- Hexagonal Si-stripped array
- 1 mm segmentation along symmetry axis
- 500 mm of active silicon length *Courtesy: P. MacGregor, CERN*

OUTLINE

- Introduction to direct reactions
- Single-particle energies and spectroscopic factors
- Observables and non observables
- Nucleon transfer reactions
- Optical potentials
- Instrumentation for transfer reactions
- Quasifree scattering
- Nucleon removal induced from light-ion target
- Instrumentation for quasifree scattering

PROTON QFS

- Quasifree scattering (QFS) to remove a nucleon from a nucleus in one step (**sudden approximation**)
- Incident energy and kinematical region chosen to minimise initial and final state interactions (ISI / FSI): **400 - 700 MeV/nucleon**

- Binding energy of the nucleon inside the nucleus is small compared to the reaction energy: **kinematics follows closely the free NN scattering kinematics** ("quasi-free").
- For stable nuclei, electron-induced quasifree scattering is the most reliable proton-removal mechanism.

KINEMATICS

 $|14$

12

10

• In a free proton-proton scattering, by momentum and energy conservation, the two scattered protons in the laboratory verify ((1): beam, (2): target, (3,4): scattered particles):

 $T_3 + T_4 = T_1 = \text{constant}$ $\phi_3 + \phi_4 = 180^\circ (\text{in plane reaction})$

• These features are characteristic of the proton-nucleus quasi-free scattering kinematics

MISSING-MASS SPECTROSCOPY

- The excitation energy of the residual nucleus can be determined by **missing mass** from the measurement of **momenta of the two protons**
- Relativistic treatment is necessary.

$$
\mathbf{q}_{\perp} = \mathbf{p}_{3\perp} + \mathbf{p}_{4\perp}
$$
\n
$$
q_{\parallel} = \frac{(p_{3\parallel} + p_{4\parallel}) - \gamma \beta (M_A - M_{A-1})}{\gamma}
$$
\n
$$
E_s = T_1 - \gamma (T_3 + T_4) - 2(\gamma - 1) m_p + \beta \gamma (p_{3\parallel} + p_{4\parallel}) - \frac{q^2}{2M_{A-1}}
$$

PROTON SPECTROMETERS

• **Ex. Grand Raiden and LAS spectrometers at RCNP (Japan)**

- Separation energy resolution: 100 keV FWHM
- Grand Raiden has an intrinsic 1/37000 momentum resolution (16 keV) with a 5% momentum acceptance
- LAS spectrometer reaches 1/5000 momentum resolution with a 30% momentum acceptance

DWIA FORMALISM

• Quasifree scattering cross section (triple differential)

 $d\sigma_{\alpha\beta}$ $dE_1d\Omega_1d\Omega_2$ = $(2\pi)^4$ $\frac{2\pi \mathcal{F}}{\hbar v} \mathrm{F}_{\mathrm{kin}} |\mathit{T}_{\alpha} \beta|^{2} \quad$ with $\mathsf{F}_{\mathrm{kin}}$ kinematical factor

Transition matrix for single-particle state $\varphi_{n\ell j}$ in Distorted Wave Impulse Approximation $T = \langle \chi_1 \chi_2 | t_{nN} | \chi_0 \varphi_{n\ell i} \rangle$

Impulse Approximation: one step, t_{pN} NN interaction in free space **Distorted Wave**: incoming proton and outgoing protons influences by optical potential

DWIA FORMALISM

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

PIKOE: A computer program for distorted-wave impulse approximation calculation for proton induced nucleon knockout reactions \hat{X}

Kazuyuki Ogata a,b,*, Kazuki Yoshida ^c, Yoshiki Chazono ^d

^a Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

^b Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

^c Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

 $^{\rm d}$ RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan

• Other similar methods: Quantum Transfer to the Continuum (QTC, Sevilla group), eikonal (Bertulani, Texas A&M), Fadeev: no open code while theorists very collaborative

R3B AT GSI/FAIR

QFS AND GAMMA IN-BEAM

MINOS

DOUBLY MAGIC 78NI

DOUBLY MAGIC 78NI

²³⁸U primary beam at 20 pnA, ⁷⁹Cu, 220 MeV/nucleon, intensity: 5 pps

Taniuchi et al., Nature (2019)

TECHNISCHE UNIVERSITÄT **DARMSTADT**

DOUBLY MAGIC 78NI

Taniuchi et al., Nature (2019)

EXAMPLE OF ALPHA CLUSTER QFS

- Kinematics is modified accordingly
- Very small cross sections $(\sim 100 \text{ pb})$

- ⁸He beam at 156 MeV / nucleon
- Evidence of interacting four free neutrons

Duer et al., Nature 606 (2022)

TECHNISCHE UNIVERSITÄT **DARMSTADT**

EXAMPLE OF ALPHA CLUSTER QFS

- Quasifree scattering applicable to nuclei, such as alpha particles
- Kinematics is modified accordingly
- Very small cross sections $(\sim 100 \text{ pb})$

- ⁸He beam at 156 MeV / nucleon
- Evidence of interacting four free neutrons

Duer et al., Nature 606 (2022)

TECHNISCHE UNIVERSITÄT **DARMSTADT**

LIGHT-ION INDUCED KNOCKOUT

- One-nucleon removal from light ion target ($9Be$, $12C$) at incident energies above \sim 50 MeV/nucleon
- Experimentally easier to implement; routinely used at NSCL from 90s
- Eikonal formalism for cross section interpretation (see next slide)

EIKONAL FORMALISM

ψ(*r* \rightarrow $= s(r)$ \rightarrow)*e ik* \rightarrow .*r* \rightarrow *and S*(*r* \rightarrow) = *e* $-i\frac{\mu}{2}$ $\hbar^2 k$ $U(\sqrt{b^2+z^2})dz$ −∞ *z* ∫ *with* $b = r_$

Eikonal approximation: straight line

TECHNISCHE

- Single-particle cross section $\sigma_{_{sp}}(n \ell j)$ = $\sigma_{_{sp}}^{_{strip}}(n \ell j)$ + $\sigma_{_{sp}}^{_{diff}}(n \ell j)$
- Stripping cross section (the target is excited) $\sigma^{strip} = 2\pi \int b\,db \int d^3r \Big| \phi_{n\ell j}(\vec{r})$ \rightarrow) 2 $\mathit{S}_{core}^{\mathit{(b_c)}}$ \rightarrow) 2 $(1 - S_{nucl}(b_n$ \rightarrow) 2 $\int d^3r \left| \phi_{n\ell j}(r) \right|^2 \left| S_{core}(b_c) \right|^2 (1 - \left| S_{nucl}(b_n) \right|^2)$ 0 ∞ ∫

Core « survives » × Nucleon « adsorbed »

• **Diffractive cross section** (the target remains in its ground state)

$$
\sigma_{\text{diff}} = 2\pi \int b \, db \bigg\langle \phi_0 \bigg| \bigg| S_{\text{core}} S_{\text{nucl}} \bigg|^2 \bigg| \phi_0 \bigg\rangle - \bigg| \big\langle \phi_0 \bigg| S_{\text{core}} S_{\text{nucl}} \bigg| \phi_0 \bigg\rangle \bigg|^2
$$

EXAMPLE

EXAMPLE

A. Navin et al., PRL 85 (2000)

STRENGTH QUENCHING

A. Gade et al., Phys. Rev. C 77 (2008) J.A. Tostevin and A. Gade, Phys. Rev. C 90 (2014)

STRENGTH QUENCHING

Aumann et al., Prog. Part. Nucl. Phys. (2021)

DIRECT NUCLEAR REACTIONS

END OF LECTURE 3

