

Track Reconstruction in Allas

ATLAS Inner Detector

ATLAS Inner Detector

ATLAS Inner Detector

• Inner detector track reconstruction up to $|\eta| = 2.5 \ (\theta \approx 8^\circ)$

UNIVERSITÄT BONN

- Originally: 3 barrel + 3 endcap layers with planar Si-pixel sensors $(382 \times 30 \,\mu m^2)$
- Since 2014: additional Insertable B-Layer (IBL) with planar and 3D Si-pixel sensors - significantly improved vertex reconstruction

Pixel Detector

UNIVERSITÄT BONN

NIM.A 568 (2006)

- 4 barrel and 9 endcap layers of silicon strip sensors ($80 \,\mu$ m pitch)
- Each module consists of 2 sensors that are mounted back-to-back with a stereo angle of 40mrad

- 350k drift tubes filled with Xe- or Ar-based gas mixture
- Radiator material around each tube triggers transition radiation for highly

relativistic particles - x-ray photons absorbed by active gas can be distinguished from ionisation signal (2 readout thresholds) - used for particle identification

Radiation Lengths $[X_n]$

r [mm]

/∆r [mm⁻¹

Track Reconstruction in ATLAS

UNIVERSITÄT BONN

Material budget can be validated through rate of secondary vertices from hadronic interactions and photon conversions in data

- noise and hit efficiency

- Specific energy loss can be used for particle identification
 - Cluster charge in pixel detectors or time-over-threshold in TRT
- Mostly used for exotic particle searches (multi-charged, magnetic monopoles, ...)
- In addition: particle identification from transition radiation signal in the TRT

Track Finding in ATLAS

ATLAS Primary Tracking

• Run multiple track finding passes on the available hits using different strategies and constraints: primary tracking, back-tracking, large-radius tracking (+ dedicated setups for low- p_T , heavy ions, cosmics, etc. that are not run on all events by default)

UNIVERSITÄT BONN

Inside-out Tracking

- Find all valid combinations of SCT and pixel hit triplets (no mixed seeds): $p_T > 500 \,\text{MeV}, d_0 < 5 \,\text{mm}, z_0 < 200 \,\text{mm}$
- Seeds are processed depending on their score: high- p_T , low- d_0 and a compatible hit in a 4th confirmation layer are preferred
- Combinatorial Kalman Filter is used to extend seeds inwards and outwards
- Confirmed Si-only tracks are extended into the TRT
- Global χ^2 -fit is used to extract the final track parameters

SCT seeds are formed first. They allow to define the beam spot region, which can then be used to discard large z_0 seeds

Seeding Performance

Ambiguity Resolution

- clusters, etc., before passing the tracks to the final track parameter fit
- mixed-density network is used to assign position uncertainties to the split clusters
- cluster charge

Track Reconstruction in ATLAS

• An elaborate scoring is used to classify track candidates based on the number hits, number of holes, shared

• For regions of interest within high- p_T jets shared hits are attempted to be split by a neural network. A second

• The rate of merged clusters in jets can be measured in data using the dE/dx distribution extracted from the

Pixel Cluster Splitting

- loss from Bremsstrahlung which leads to larger scattering angles
- Allow additional scattering probabilities, modelled as a sum of Gaussian distributions (Gaussian Sum Filter)

• By default all trajectories assume pion tracks - electrons can have significantly larger energy

TRT Track Extensions

- Tracks from the Si-only tracking are attempted to be extended into the TRT
- All TRT straws consistent with the track road are considered and labelled as "precision hit" if the track passes within 1.75σ of the TRT drift-circle. Hits that are not precision hits get a penalty in the fit
- Several iterations of the global χ^2 fit are performed until it converges. Only candidates with more than 30% precision hits are accepted as TRT extensions to ensure improvement of the track parameter measurement

ATL-PHYS-PUB-2015-018

- To recover photon conversion tracks and other late decays, a back-tracking pass is run after the inside-out tracking
- Start from EM cluster with $E_T > 6$ GeV to define a region of interest
- Use Hough-transformation of all TRT hits in this ϕ -region in a to form segments and define the initial track parameters
- Look for Si-hit pairs that confirm the TRT segment, and run the usual inside-out Kalman-Filter + TRT extension to finalise the tracks
- TRT segments that find only 1 or 0 Si-hits are not used as track candidates in general, but still used in photon conversion tagging

Back Tracking

Inner Detector Alignment

- The detector modules are not fixed in space: They move whenever the magnets are turned on, due to temperature effects, bending, etc.
- These effects need to be considered for ultimate precision
- The alignment constants are updated for all runs, and even within runs (not all degrees of freedom) **Track Reconstruction in ATLAS**

• Use muons from Z and J/ψ decays to determine all module positions and orientations by global χ^2 minimisation

Inner Detector Alignment

Eur. Phys. J. C 80 (2020) 1194

Level	Description	Structures	DoF	Additio
1	IBL Pixel detector SCT endcaps (SCT barrel fixed)	1 1 2	All All All except <i>T_z</i>	
	TRT split into barrel and 2 endcaps	3	All except T_z	
Si 2	Pixel and IBL barrel split into layers Pixel endcaps split into disks SCT barrel split into layers	4 6 4	All All All	Beam s momer impact
	SCT endcaps split into disks	18	All	mpuor
Si 3	Pixel and IBL barrel modules Pixel endcaps modules SCT barrel modules SCT endcaps modules	1736 288 2112 1976	All T_x, T_y, R_z All T_x, T_y, R_z	Beam s momen impact module
TRT 2	TRT barrel split into barrel modules TRT endcaps split into wheels Pixel and SCT detectors fixed	96 80	All except T_y T_x, T_y, R_z	Momer impact
TRT 3	TRT straws Pixel and SCT detectors fixed	351k	T_x, R_z	

21

Eur. Phys. J. C 83 (2023) 1081

- Run dedicated pass on remaining hits with significantly relaxed requirements ($d_0 < 300$ mm, $z_0 < 500$ mm). Only consider SCT seeds since pixel hits are mostly missed.

Long-Lived Particles

• Tracks originating from long-lived decays (K_s or BSM particles) often fail the default track parameter cuts

Eur. Phys. J. C 83 (2023) 1081

- The original version was only run on 10% of the data due to the large CPU time consumption.
- about 5% track finding efficiency allows to run this algorithm by default on all data
- (like secondary vertex fit)

Track Reconstruction in ATLAS

Large Radius Tracking

UNIVERSITAT

• Significant reduction in run time by allowing at most 1 hole and narrowing the search road: losing

• The large number of fake tracks at high pile-up gets reduced once physics requirements are applied

- Before the start of Run 3 the track finding logic was completely revisited to reduce the CPU time
- Tighten impact parameter cuts in the seeding, no more shared pixel hits in seeds, narrower search road when extending seeds, require 8 instead of 7 silicon hits before TRT extension, higher cluster energy required to seed back-tracking, ...

Performance after CPU Optimisation

- to the reduced number of fake tracks

• The tightened selections results in 1-4% loss of track finding efficiency but reduces the number of fake tracks by more than one order of magnitude, especially at high pile-up

• Total speed up of up to factor 2, and and a reduction of event size by up to 40%, due

Finding and Fitting Vertices

Mean Number of Interactions per Crossing

• Typically over 50-60 pile-up interactions per bunch-crossing in Run 3!

- used mode finder)
- defined by cutting on these weights

Primary Vertex Finding

• Find maxima in track density along z, group tracks accordingly before using them for a primary vertex fit. Use the Gaussian smoother algorithm for the seed definition since Run 3 (before we

• Compatible tracks are combined in a weighted Kalman-Filter in the Adaptive Multi-Vertex Fitter

• Each track is assigned a weight for each vertex association. The track-to-vertex association is

Tracking at the HL LHC

UNIVERSITÄT BONN

28

- pixel detector, extend using a combinatorial Kalman filter
- At the expected pile-up of 200, the ITk maintains a very similar track reconstruction efficiency and a significantly reduced number of fake tracks, allowing track finding up to $|\eta| = 4$

• Track finding follows the same principles as the current ATLAS tracking: find and confirm seed triplets in the

• The baseline inside-out tracking is implemented and stable - work on special cases and extra tracking passes

Outlook

- 4 reconstruction

50

Efficiency **ATLAS** Simulation Preliminary $\sqrt{s}=14$ TeV, t \overline{t} , $<\mu>=200$, $p_{-}>2$ GeV 1.2 ITk layout: 23-00-03 IDTR-2023-06 0.6 0.4 CKF track finding 0.2 **GNN track finding** 10 20 30 p_T [GeV]

• The track finding is currently being re-implemented from scratch using ACTS - will be the default for Run

• Novel approaches are being investigated: track finding with GNNs; using GPUs (online or offline) or FPGAs (for HL LHC event filter tracking)

