Track Reconstruction and Performance at Belle II

Thomas Lück

May 17, 2024

- SuperKEKB and Belle II
- Belle II track finding algorithms
- Usage of SVD time
- Tracking performance
- Summary

- asymmetric e⁺e⁻ collider in Tsukuba (Japan)
- 7GeV electrons on 4GeV positrons
- B-factory:
 - center of mass energy of 10.58GeV
 - produce
 - $e^+e^-
 ightarrow \Upsilon(4S)
 ightarrow Bar{B}$
 - design luminosity $6 \times 10^{35} cm^{-2} s^{-1}$
 - current world record inst. luminosity:

 $\mathcal{L} = 4.7 \times 10^{34} cm^{-2} s^{-1}$

- Run 1: 424*fb*⁻¹ (2019-2022); Run 2 started end of 2023
- Goal to collect 50*fb*⁻¹

Pixel Detector (PXD)

- 2 layers of DEPFET silicon pixel sensors (r = 14, 22 mm)
- pixel sizes 50x (55-85) μm
- 40 sensors arranged in ladders
- in total 7.7 million pixels
- 20 μs integration time
- 0.2% X₀ per layer

Silicon Vertex Detector (SVD)

- 4 layers of double-sided silicon strip sensors (r=39, 80, 104, 135mm)
- 172 sensors, 220k readout strips
- slanted sensors in forward direction
- ullet strip distance between 50 and 240 μm
- strips are arranged perpendicular to get 2D information
- $< 1\% X_0$ per layer

Central Drift Chamber (CDC)

- 14.2k wires in 56 layers radius
 168 1111 mm
- arranged into 9 super layers of axial and stereo wires
- stereo wires skewed w.r.t. axial wires to get z information
- drift cell sizes from $\approx 1 cm$ to $\approx 2 cm$

Tracking environment at Belle II

- on average 11 tracks per BB event
- soft momentum spectrum
 - multiple scattering is significant
- tracks with p_T < 0.25 GeV loop inside the detector

Detector occupancy at nominal luminosity: $6 \times 10^{35} cm^{-2} s^{-1}$ laver 1 laver 3 # of hits # of hits occupancy occupancy Y(4S) 5×10^{-6} 0.02% 11 beam bkg 50000 3% 3200 3%

Global CDC track finder

- tracks coming from IP
- conformal mapping: $u = \frac{x}{x^2 + y^2}; v = \frac{y}{x^2 + y^2}$
- Legendre transformation for Hough space:
 - parameter space representing all tangents to a drift circle
 - $\rho = x_0 \sin(\theta) + y_0 \cos(\theta) \pm R_{Drift}$
- Quad-Tree-Search for finding track parameters in Hough space

Local CDC track finder using Cellular Automaton (CA)

Cellular automaton for segment building in CDC

- segments: shorter track pieces (usually within one super layer)
- start combining triplets of hits assuming straight trajectory

Cellular automaton for track building in CDC

- cell: pair of axial + stereo wire segments
- combining cells into tracks starting from a seed, by selecting longest path

SVD Standalone track finder (VXDTF2)

- local algorithm utilizing Cellular Automaton
- segments (cell): connection between hits on neighboring sensors
- connections of segments are filtered using simple requirements
- Cellular automaton collects longest paths
- start from outer most hits due to less background

SVD track finder: Hit Filtering

- filter hits during CA step
- divide sensor into rectangular sectors (4×4 sectors per sensor)
- only hits on related sectors: reduces combinatorics
- selection of hit combinations:
 - consider 2-hit and 3-hit combinations of sectors
 - simple geometric quantities (angles, distances, radii) and hit times
 - individual cut values for each sector combination
- training on MC samples:
 - learn relations between sectors
 - learn cut values for each sector combination
 - use 13 mio MC events (mostly BB and some e^+e^- and $\mu^+\mu^-$)

Illustration of the sector concept

Combinatorial Kalman Filtering (CKF) in Belle II tracking

Track Finding

- use found track as seed track
- extrapolate track into other sub-detector to look for hits
- from CDC to SVD and vice versa
- PXD hits only via CKF

Track Merging

- tracks from one particle are found by different subdetectors / track finders ⇒ need merging
- use one track as seed
- use CKF to update seed track with hits from other track

Object-Tracking-Kalman-Filter-with-Ease

Track Fitting

Deterministic Annealing Filter

- implentation: Genfit2 package
- iterate Kalman filtering for track candidate
- reject hits farthest away from track in each iteration
- on average 3-5 passes till convergence
- material effects are taken into account
- 5 track parameter (Runge Kutta representation) at interaction point are stored
- three particle hypotheses fitted and stored:
 - π, K, p
 - track fit hypothesis with closest mass provided to analysts
- dedicated V0 (K_S, γ → e⁺e⁻, Λ) finder/fitter for off IP vertices: store separate track fit results

Bringing it all together

- 2 different tracking algorithms for CDC
- one stand alone algorithm for SVD
- have to combine tracks found in different detectors
- attach PXD hits to tracks

Usage of SVD time in track finding

- beam background is an issue
- use precise SVD time to reduce beam background:
 - APV25 chip for readout developed for CMS
 - shaping time of 50 ns
 - 6 samples recorded after trigger
 - sample every 31.44 ns
 - fit shaping function to 3 most relevant hits: $f(t) = \frac{t}{\tau} \exp(-\frac{t}{\tau})$
 - resolution of few ns
- most beam background hits are off-time

Usage of SVD time in track finding

- time information at the moment only for SVD track finding
- both SVD standalone algorithm and CKF use space points as input

Space Point

- global 3D coordinates of hit
- SVD space point: combine positions of perpendicular Clusters (u,v)
- filter by time during space point creation:
 - absolute time for single hits: $|t_{u,v}| < 50 ns$
 - time difference between u- and v-Clusters on same sensor: $|t_u t_v| < 20 ns$
- time filters applied during CA step of SVD track finding
 - time difference between u- and v-Clusters same sensor
 - time difference between Clusters from different sensors
 - cut values learned during training phase
 - individual cuts for different combination of sectors

Other and future applications of SVD time

- SVD time for Event T0 estimation
 - estimate Event T0 from time associated to SVD hits attached to tracks
 - only track candidates with $p_t > 250 MeV$ to avoid curling particles
 - on average less than 1 ns resolution on data
 - previous method based on CDC hits: 2000 × slower
- provide track time information to analysts in future
 - included in new release
 - not yet used in MC production or data reprocessing
- replace time cuts by hit time grouping
 - currently cut on times for space point selection
 - grouping of SVD hit times promises improvement
- SVD hit times for CDC to SVD CKF hit selection
 - work in progress

New idea: SVD hit time grouping

- finding efficiency for tracks normalized to MC based track finder (ideal track finder)
- fake rate: fraction of fake tracks and tracks from beam background
- clone rate: fraction of multiple tracks reconstructed per single particle (e.g. looper)
- selection on hit time grouping reduces fake rate by 50%

SVD hit time grouping

- identify groups in hit time
- chose hits from group closest in time to collision

	Hit time grouping		Rel. difference
	off	on	
Track finding eff.	$93.67\pm0.24~\%$	$93.69\pm0.24~\%$	+0.02 %
Fake rate	$9.55\pm0.29~\%$	$4.37\pm0.20~\%$	-54.26 %
Clone rate	$3.81\pm0.19~\%$	$3.56\pm0.18~\%$	-6.62 %

Impact parameter resolution

- excellent resolution due to PXD: $\approx 2 \times$ improvement
- down to 10μm for d₀ for high momentum
- still around $40\mu m$ to $50\mu m$ at $p_T \approx 0.5 GeV$

Resulted in most precise D^+ life time measurement:

• $\tau_{PDG} = 1040.0 \pm 7.0$ fs

• $\tau_{Bellell} = 1030.4 \pm 4.7 \pm 3.1 \text{fs}$

d_0 resolution on MC

Momentum resolution

- ranges between 0.2% for high p_T and $\approx 5\%$ at $p_T = 0.1 GeV$
- majority of tracks in BB events $p_T \approx 0.5 GeV \Rightarrow \approx 0.4\%$ resolution

Transverse momentum resolution

• estimated on 5000 simulated BB events at nominal luminosity

Track finding performance

- track finding efficiency as function of p_T and $\cos(\theta)$
- $\bullet\,$ above 90% for most of the phase space covered by Belle II
- on average 93.6% efficiency

Tracking Performance

- fake rate: beam background particles or random combination of hits
- at low p_T dominated by two photon processes: $e^+e^-
 ightarrow e^+e^- f\overline{f}$
- forward and backward direction BhaBha events: $e^+e^-
 ightarrow e^+e^-(\gamma)$
- at high p_T: random combination of hits and low statistics (kinematics BB events)

Summary

- introduction to Belle II track finding
- usage of SVD hit time during Belle II track finding:
 - hit filtering before track finding
 - filtering of hit combinations during track finding
 - Event T0 estimation
- SVD hit time information powerful tool to reject beam background
- SuperKEKB constantly increases luminosity
 - beam background will become more important in future
- Belle II track finding performed well so far, contributing to competitive physics results
- new approaches investigated: GNN track finding for CDC

Appendix

Resolution of d0_res

Resolution of z0_res

