

ACTS project: Status and R\&D
A. Salzburger (CERN)

From where we come

- The acts project was started roughly 6 years ago
- Project Mission Statement:
- Creating a toolbox of re-usable tools for experiments
- detector agnostic top level tools
- specification possibility for dedicated detectors/experiment
- component library design
- Facilitate algorithmic and technology research
- Allow easy extensibility
- ML / Accelerator integration (two R\&D lines on acceleration / ML algorithms)

Where we stand now

- Establish a feature rich toolbox
- C++17 standard (preparing move to C++20)
- Minimal dependencies (CMake, Eigen)
- Plugins to enhance functionality
- Enables parallel processing
- The acts project has an increased several base, e.g.

Where we stand now

Core concepts: multi threading and contextuatlity

Built-in parallelisation support

Allows parallel execution of this operation (without explicit technology binding, such as tbb) within and across events, nested State structs are used for necessary caching operations

Core concepts: multi threading and contextuatlity

Built-in parallelisation support and contextuality

```
namespace Acts {
    /// @param gctx the geometry context (e.g. alignment)
    /// @param input the input data
    OutputData geometricOperation(const GeometryContext& gctx,const InputData& input) const;
    };
}
```

using GeometryContext = std::any;

ACTS allows you to pack your own contextual data into the context objects (geometry, magnetic, field) and will carry it through the code base (untouched)

```
auto Experiment::applyCorrection(const GeometryContext& gctx, const InputData& input) const {
    const Experiment::Payload& payload = std::any_cast<const Experiment::Payload&>(gctx);
}
```


Core concepts: data driven, configuration \& options

Design convention for data driven design, configuration and option

```
namespace Acts {
    /// doxygen documentation
    class Module {
        /// @struct Config for this module,
        struct Config {
            ActsScalar globalParameter; ///< configure this module
    };
    /// @struct Options for this module, changeable on call
        struct Options {
            ActsScalar callParameter; ///< how the horse feels today
    };
    /// @param cfg the configuration struct for this module
    Module(const Config& cfg) : m_config(cfg){};
    /// @param input the input data
    OutputData operation(const InputData& input, const Options& opt) const;
    };
}
```


Core concepts: configuration binding

Simple Config structs on ACTS side

```
namespace Acts {
    /// doxygen documentation
    class WorkHorse {
        /// @struct Config for To
        struct Config {
            ActsScalar coatColor; ///< configure the coat color
            ActsScalar maxPath; ///< set the max path this horse can run
        };
    };
}
```

Connection to experiment framework, e.g. Gaudi/Athena

```
/// feed from Framework into ACTS configuration
declareProperty("CoatColor", m_cfg.coatColor);
declareProperty("MaxPath", m_cfg.maxPath);
```


Toolbox: track reconstruction building blocks

Geometry \& Material

Event Data Model

Track Finding \& Fitters

Vertexing
業
R\&D lines (ML, GPU)

Geometry - Concepts

- ACTS creates a reconstruction view of the detailed geometry
- Plugin mechanism ensures compatibility with many geometry sources
- Context mechanism ensures MT ready contextual geometry

Detailed geometry model,

e.g. DD4hep, TGeo, GeoModel, etc.

ACTS geometry model
with builtin navigation

Geometry R\&D (1)

- Geometry model of ACTS stems from ATLAS Trk: :TrackingGeometry
- Conceptual building blocks

```
TrackingVolume
Layer
Surface
```


- detray GPU R\&D geometry: re-implemented w/o layer concept
- huge simplification in navigation code
- can we do this also for ACTS/Core?

Geometry R\&D (2) - Experimental

- Experimental: : Detector Geometry model of ACTS

Gen1 geometry type

Acts: : Surface Acts::Surface

Acts: :TrackingVolume

Acts: : BoundarySurfaceT Acts::TrackingVolume

Acts: :TrackingGeometry

Gen2 geometry type
Acts: : Surface

Acts: : Experimental DetectorVolume

Acts: : Experimental
Portal

Acts: : Experimental Detector

Surface objects are unchanged, allows client code to be untouched

Layer objects do not exist anymore,
they are represented by volumes
Double serving of volumes as containers or navigation volumes omitted
Portal objects are not templated anymore, they are holder classes of surfaces and volume switches
Portal objects the top level entry point that will guide into the root volumes

Geometry R\&D (3) - Blueprint

- New type of geometry building using Experimental: :Blueprint

Translation of objects from geometry model,

from one source, but not necessarily

Logic of how to build/group
$\xrightarrow{\longrightarrow}$
e.g. DD4hep

Geometry R\&D (4) - Blueprint

- New type of geometry building using Experimental: :Blueprint

Blueprint is an instruction graph

- Added functionality to visualize before building, in order to spot problems
non-coloured nodes are virtual containers

Geometry R\&D (5) - drift detectors

- In Gen2 geometry, navigation is outsourced to Delegates
- allows for client-specified navigation
- helped developing first prototypes for (ATLAS) Muon System

Mock up muon sector spectrometer . Every detector volume holds the navigation delegate

Geometry R\&D (5) - Blueprint on ODD

ODD building blueprint from DD4hep:

Resulting ODD detector

Geometry (6) - Quo vadis?

- Gen1 geometry: Acts: :TrackingGeometry

```
Well established, baseline
```

- Gen2 geometry: Acts: Experimental: : Detector Blueprint Layer-less Navigation delegates

- Gen3 geometry:

- adiabatic merge of those two concepts?
- morph of Gen2 into full functionality of Gen1?

Material

- ACTS ships with a material mapping module
- allows to transcribe the full Geant4 geometry and map it onto the simplified reoncstruction geometry

Detailed geometry model,
e.g. DD4hep, TGeo, GeoModel, etc.

ACTS geometry model
with builtin navigation

Material R\&D

- New Grid based material classes introduced
- Including a k-means compression algorithm
- Material mapping/validation without \& with propagation/navigation
- This is to allow for material mapping/ validation with optionally bypassing the propagator infrastructure
t_X0:v_eta

- Support for Gen1/Gen2 geometry model
- Move most material mapping/validation into Core
- Allow for more seemingness integration into SW stack

Event Data Model (1)

(Bound) track parameterisation is defined:
local coordinates of the surface + global momentum

$$
\vec{x}=\left(l_{0}, l_{1}, \phi, \theta, q / p, t\right)^{T}
$$

Event Data Model (2)

Parameter	\mathbf{l}_{0}	\mathbf{l}_{1}	phi	theta	\mathbf{q} / \mathbf{p}	\mathbf{t}
Bound track parameters						
Pixel measurement						
Pixel measurement with time						
Strip measurement (along local x)						
Strip measurement (along local y)						
Drift time/circle measurement						
Track segment (straight line)						
\ldots						

Measurements can be represented as subsets of the full bound parameter space.

This is done at compile time to increase computing performance.

Event Data Model (3)

- MultiTrajectory with frontend/backend split

ACTS has an internal EDM optimised for track reconstruction.

- recent work to separate transient model from I/O backend
- demonstrator with PODIO established
- Non-optimised

EDM4Hep version also available

Architecture

Fitters (1) - Kalman Filter

- Kalman Filter implementation very matured
- Designed as a plugin into the Propagation engine
- shows nice performance on Geant4 simulated results
- Calibrator
- Allows to do on the fly measurement creation

Helps to get ultimate resolution for a detector
Can help to resolve ambiguities
A way to start with a misaligned detector

Example, tracking in dense environment

Kalman Filter (2)

- Extremely high level of accuracy control
- Given by stringent mathematical validation
- Detailed material description

Kalman Filter (3)

- Extremely high level of accuracy control
- Given by stringent mathematical validation
- Detailed material description
- Example on OpenDataDetector (Geant4 simulation)

Fitters (2) - Gaussian Sum Filter

- Gaussian Sum Filter has been validated on Open Data Detector
- shows nice performance on Geant4 simulated results
- Is designed as a re-fitter, i.e. after electron pattern recognition
- Electron pattern recognition not yet implemented
- start with concept from ATLAS to enlarge window if electron hypothesis is triggered ...

Fitters (3) - Global Minimisation

- Global chi2 fitter progress
- First pipe-line on OpenDataDetector implemented
- Material effect integration not yet implemented
- Exists in a python based prototype

All surfaces
pull_eLOC0_ubs

pull_eLOC1_ubs

pull_eTHETA_ubs

pull_eQOP_ubs

Combinatorial Kalman Filter (1)

- Track finding implementation using a Combinatorial Kalman Filter (CKF)
- Achieves almost perfect technical efficiency for muons
- Runs on top of different seeding strategies
- Triplet seeding
- Orthogonal seed finder- GNN
- New seeding for telescope detectors

Combinatorial Kalman Filter (2)

- Speed performance optimisation
- Work on a new stepper has started (based on Symbolic math transcription)
- Combinatorial Kalman filter updates
- Improved branch stopping logic introduced
- Smoothing separated from forward filtering
- New, alternative CKF with external propagator steering in development

Vertex reconstruction

- ACTS implements a fully fledged primary vertex reconstruction suite
- Iterative Finder + Billoir Fitter
- MultiAdaptiveVertexFinder + Fitter
- Optimised for very high track and vertex multiplicities (HL-LHC)
- Was the first module to be deployed in ATLAS from ACTS
- Huge speed update with identical results

Vertex reconstruction R\&D: fully time-aware

- Introduction of time in all components of vertex reconstruction
- full exercise on OpenDataDetector in progress

ODD Simulation
$t \bar{t},\langle\mu\rangle=200$

R\&D line: parallelisation

- First chain runs on OpenDataDetector in stand-alone
- Performance (physics/computing) evaluation to start
- Integration of 'traccc' suite as Plugins started (talk by Beomki Yeo, tomorrow)
- Aim is to be able to evoke a traccc reconstruction chain from ACTS

R\&D line: machine learning

- ML based ambiguity solver

R\&D line: machine learning

- NN based cluster position / calibration
- NN based clusterization available

R\&D line: machine learning

- Graph network based pattern recognition with CKF on top

Preliminary results show that the CKF can be restricted to a branch number $=1$ if first two (short) strip layers are also included (taking best hit only)

Collaborating

ACTS is Open Source and invites contributions, corrections, interactions

Contributing

Pull requests come with a template that guides through a proper submission semantic naming: feat, doc, refactor, fix

refactor!: MTJ stores measurement as jagged vector \#1512

..-... paulgessinger wants to merge 8 commits into acts-project:main from paulgessinger:refactor/mtj-jagged-meas \square
meaningful description

BREAKING CHANGE: Acts: :MultiTrajectory measurement access methods change:
constexpr auto measurement(IndexType measIdx) const
No one-assign yourself

- constexpr auto measurement
+ constexpr auto measurement(IndexType measIdx) const ;
None yet

Community

Community-Supported Components: Acts

Weekly dev meeting with involvement of users at multiple experiments
Status of work visibility through presentations
Example of agile in community software

| acts-project/acts: PRs merged between 2022-09-13 and 2022-09-20 II
 - 1- docs: Update logging doc, add info on thresholds (PR\#1520)
 by ©paulgessinger, no assignee, merged on 2022-09-16
 - F- docs: update markdown cheatsheet (PR\#1524)
 by Obenjaminhuth, no assignee, merged on 2022-09-16
 - 1- feat: Exa.TrkX with torchscript backend (PRW1473)
 by ©benjaminhuth, no assignee, merged on 2022-09-16
 - 1- docs: Gaussian Sum Filter (PR \# 1403)
 by ©benjaminhuth, assigned to ©benjaminhuth, merged on 2022-09-16
 - 1- fix: Added missing return to seedfinder::CreateSeedsForGroup (PR\#1521)
 by ©guilhermeAlmeida1, no assignee, merged on 2022-09-16
 - L- refactor: Improve material mapping speed (PR\#1458)
 by ©Corentin-Allaire, assigned to ©asalzburger, merged on 2022-09-16
 - F- feat: Allow configurable particle selection and reproducible seeds for Geant 4 (PR\#1428) by ©benjaminhuth, no assignee, merged on 2022-09-19
 - 1- chore: Add priority merge label to kodiak config (PR\#1532)
 by ©paulgessinger, no assignee, merged on 2022-09-19 | acts-project/acts: PRs merged between 2022-09-13 and 2022-09-20 III
 - 1- chore: Add priority label to kodiak config (PR\#1533)
 by ©paulgessinger, no assignee, merged on 2022-09-19
 - 1- docs: Contribution guidelines (PR\#1525)
 by ©paulgessinger, no assignee, merged on 2022-09-19
 - 1- fix: ParticleSmearing options not setup in AMVF example exe (PR \|| 1508) by Opaulgessinger, no assignee, merged on 2022-09-19
 - 1- refactor: improve full_chain_itk.py example (PR\#1513) by Otimadye, assigned to ©andiwand, merged on 2022.09-19 |
| :---: | :---: |
| acts-project/acts: Open PRs I
 - 12 refactor: improve full_chain_odd.py example (PR\#1538) by Candiwand, assigned to @timadye, updated on 2022-09-20
 - 12 refactor: MTJ stores measurement as jagged vector (PRW1512) by ©paulgessinger. It no assignee, updated on 2022-09-20
 - In feat: Hough Transform first implementation (PR \#1305) by ©jahreda. A no assignee, updated on 2022-09-19
 - In feat: Material Mapping Auto-tuning script with Orion (PR \#1464) by ©Corentin-Allaire. I no assignee, updated on 2022-09-16
 - In docs: Exa.TikX (PR\#1517)
 by ©benjaminhuth, I no assignee, updated on 2022-09-16
 - IV fix: Refactor and fix component merging for GSF (PR \#1 1364) by ©benjaminhuth, assigned to ©asalzburger, updated on 2022-09-13
 - 17 feat: Add a tool for writing B-fields to disk in CSV format (PRi\|1470) by ©stephenswat, assigned to estephenswat, updated on 2022-09-07 | acts-project/acts: Open PRs II
 - 1 hlm WP de test exatrikx training d (PR\#1505) by ©benjaminhuth. A no assignee, updated on 2022.09-20
 - 1 km WIP Feat: MultiTrajectory backends const version (PR\#1496) by ©paugessinger. It no assignee, updated on 2022-09-20
 - 12 Win WP feat: VectorMultiTrajectary memary statiticics (PR/1511) by ©paigesinger. A no assignee, updated on 2022-09-19
 - In Wh WP refactor: Add macro to simplify algorithm binding (PR/1510) by ©benjaminhuth. A. no assignee, updated on 2022-09-19
 - n Wh WP docs: updates to the seeding documentation (PR / 1 1476) by OLuisfelipeCoelho. A no asignee, updated on 2022-09-16
 - $1 \mathrm{wlw} \mathrm{wP} \mathrm{docs:} \mathrm{adding} \mathrm{Fatras} \mathrm{decciption} \mathrm{(PR} \# 1402$)
 by ©asalzburger, assigned to easaltburger, updated on 2022-09-14
 - n m wip docs: polish tgeo plugin doc (PRe\|1397)
 by ©niermann999, assigned to ©niermann999, updated on 2022.09.14 |

Final remarks

- The ACTS project has grown immensely during the last years
- a very feature rich toolbox that is still enlarging
- increased focus on consolidation \& performance tuning has started
- Collaboration is invited
- This is an open source project where we want to serve many clients
- Have the resources to optimise known algorithms and concepts
- Free resources to do innovative R\&D
acts-developers@cern.ch
acts-users@cern.ch
acts-parallelization@cern.ch
acts-machineleaning@cern.ch
acts-telescope@cern.ch

GitHub

Mattermost
[CSBS, ACTS]

Email lists

Code base for acts-project, R\&D lines, spin offs

Communication channel

Online documentation (built from latest snapshot)

Write-up documentation

Spin-offs

Plotting: actsvg

2D plotting library dedicated for tracking

- No dependencies, C++ header only, no ACTS dependency
- ACTS and detray translate into actsvg::meta objects
- Plot geometry \& geometric relations (on mouse over effects for debugging)
- Plot clusters \& cluster information

* bin $(0,10)$

Target:

* module 09
* module 010
* module 011
* module 19
* module 110
* module 111
actsvg is a generic plotting library.

Community: Open Data Detector \& key4hep

Evolution of TrackML detector

- Re-implemented in DD4Hep to enable full/fast simulation
- Quasi-realistic feedback to allow real-life scenario testing of algorithms
- Supports TrackML output format through ACTS binding (work ongoing to also support edm4hep)

ACTS integration into key4hep SW stack

- Codename: acts4hep
- Summer student project to make a ACTS Gaudi based demonstrator

Ongoing activity to include first Calorimeter description, MS to follow.

