ACTS project: Status and R&D A. Salzburger (CERN)

From where we come

- The acts project was started roughly 6 years ago
- Project Mission Statement:
 - Creating a toolbox of re-usable tools for experiments
 - detector agnostic top level tools
 - specification possibility for dedicated detectors/experiment
 - component library design
- Facilitate algorithmic and technology research
 - Allow easy extensibility

- ML / Accelerator integration (two R&D lines on acceleration / ML algorithms)

Where we stand now

- Establish a feature rich toolbox
 - C++17 standard (preparing move to C++20)
 - Minimal dependencies (CMake, Eigen)
 - Plugins to enhance functionality
 - Enables parallel processing
- The acts project has an increased several base, e.g.

Where we stand now

E C acts-project / acts	Q
<> Code ③ Issues 101 \$7 Pull requests 53	짖 Discussions 🕟 Actions 田 Projects
ats Public	S Edit Pir
ੁੀ P main 🔹 ੀ 108 Branches 🕟 158 Tags	Q Go to file
andiwand refactor: Simplify layer handling in Na	vigator (#3190) 🚥 🗙 a16e3e6·3
github	feat: removing SYCL Plugin (#3186)
Alignment	ci: Add clang-tidy check for nested namespace
CI	refactor!: Refactor CKF branch stopper to allow
Core	refactor: Simplify layer handling in Navigator (#
Examples	chore: Use Fatras log level for propagation (#31
E Fatras	refactor: replace C-style casts (#3146)
Plugins	<pre>refactor!: Use std::string_view for addColumn i</pre>
Tests	feat: removing SYCL Plugin (#3186)
Cmake	feat: removing SYCL Plugin (#3186)

Core concepts: multi threading and contextuatlity

Built-in parallelisation support

within and across events, nested **State** structs are used for necessary caching operations

5

Core concepts: multi threading and contextuatlity

Built-in parallelisation support and <u>contextuality</u>

using GeometryContext = std::any;

ACTS allows you to pack your own contextual data into the context objects (geometry, magnetic, field) and will carry it through the code base (untouched)

auto Experiment::applyCorrection(const GeometryContext& gctx, const InputData& input) const {

const Experiment::Payload& payload = std::any_cast<const Experiment::Payload&>(gctx);

OutputData geometricOperation(const GeometryContext& gctx,const InputData& input) const;

Core concepts: data driven, configuration & options

Design convention for data driven design, configuration and option

```
namespace Acts {
  /// doxygen documentation
  class Module {
  /// @struct Config for this module,
    struct Config {
       ActsScalar globalParameter; ///< configure this module
  };
   /// @struct Options for this module, changeable on call
    struct Options {
       ActsScalar callParameter; ///< how the horse feels today
  };
   /// @param cfg the configuration struct for this module
   Module(const Config& cfg) : m_config(cfg){};
   /// @param input the input data
   OutputData operation(const InputData& input, const Options& opt) const;
  };
```

7

Core concepts: configuration binding

Simple Config structs on ACTS side

Connection to experiment framework, e.g. Gaudi/Athena

/// feed from Framework into ACTS configuration
declareProperty("CoatColor", m_cfg.coatColor);
declareProperty("MaxPath", m_cfg.maxPath);

ActsScalar coatColor; ///< configure the coat color ActsScalar maxPath; ///< set the max path this horse can run

8

Toolbox: track reconstruction building blocks

Vertexing

R&D lines (ML, GPU)

Geometry - Concepts

- ACTS creates a reconstruction view of the detailed geometry
 - Plugin mechanism ensures compatibility with many geometry sources
 - Context mechanism ensures MT ready contextual geometry

Detailed geometry model, e.g. DD4hep, TGeo, GeoModel, etc.

ACTS geometry model with builtin navigation

Geometry R&D (1)

- - Conceptual building blocks

TrackingVolume

Layer

Surface

Quite some overlap between those

- detray GPU R&D geometry: re-implemented w/o layer concept - huge simplification in navigation code - can we do this also for ACTS/Core ?

Geometry model of ACTS stems from ATLAS Trk::TrackingGeometry

Geometry R&D (2) - Experimental

Experimental::Detector Geometry model of ACTS

	Gen1 geometry type	Gen2 geometry type	
	Acts::Surface	Acts::Surface	Surface objects are unchanged, allows client code to be untouched
	Acts::Layer		Layer objects do not exist anymore, they are represented by volumes
	Acts::TrackingVolume	Acts::Experimental:: DetectorVolume	Double serving of volumes as containers or navigation volumes omitted
	Acts::BoundarySurfaceT <acts::trackingvolume></acts::trackingvolume>	Acts::Experimental:: Portal	Portal objects are not templated anymore, they are holder classes of surfaces and volume switches
	Acts::TrackingGeometry	Acts::Experimental:: Detector	Portal objects the top level entry point that will guide into the root volumes

Geometry R&D (3) - Blueprint

New type of geometry building using Experimental::Blueprint

Geometry R&D (4) - Blueprint

New type of geometry building using Experimental::Blueprint

<u>Blueprint is an instruction graph</u>

- Added functionality to visualize before building, in order to spot problems

non-coloured nodes are virtual containers

Geometry R&D (5) - drift detectors

- In Gen2 geometry, navigation is outsourced to Delegates
 - allows for client-specified navigation
 - helped developing first prototypes for (ATLAS) Muon System

Mock up muon sector spectrometer. Every detector volume holds the navigation delegate

Geometry R&D (5) - Blueprint on ODD

ODD building blueprint from DD4hep:

Resulting ODD detector

Geometry (6) - Quo vadis ?

- Gen1 geometry: Acts::TrackingGeometry Well established, baseline
- Gen2 geometry: Acts::Experimental::Detector -
 - Blueprint
 - Layer-less
 - Navigation delegates

- Gen3 geometry:

Material

- ACTS ships with a material mapping module
 - reoncstruction geometry

Detailed geometry model, e.g. DD4hep, TGeo, GeoModel, etc.

- allows to transcribe the full Geant4 geometry and map it onto the simplified

ACTS geometry model with builtin navigation

Material R&D

- New Grid based material classes introduced - Including a k-means compression algorithm
- Material mapping/validation without & with propagation/navigation
 - This is to allow for material mapping/ validation with optionally bypassing the propagator infrastructure
 - Support for Gen1/Gen2 geometry model
- Move most material mapping/validation into Core - Allow for more seemingness integration into SW stack

t_X0:v_eta

2.5

Event Data Model (1)

(Bound) track parameterisation is defined: local coordinates of the surface + global momentum

Event Data Model (2)

Parameter

Bound track parameters

Pixel measurement

Pixel measurement with time

Strip measurement (along local

Strip measurement (along local

Drift time/circle measurement

Track segment (straight line)

. . .

Measurements can be represented as subsets of the full bound parameter space.

This is done at compile time to increase computing performance.

	lo	l ₁	phi	theta	q/p	t
x)						
y)						
t						\leq

Event Data Model (3)

MultiTrajectory with frontend/backend split

ACTS has an internal EDM optimised for track reconstruction.

- recent work to separate transient model from I/O backend
- demonstrator with PODIO established
- Non-optimised **EDM4Hep version** also available

Architecture		
Track finding		
Track fitters		
Performance monito		
Downstream reconstru		

Fitters (1) - Kalman Filter

- Kalman Filter implementation very matured
 - Designed as a plugin into the Propagation engine
 - shows nice performance on Geant4 simulated results
- Calibrator
 - Allows to do on the fly measurement creation
 - Helps to get ultimate resolution for a detector
 - Can help to resolve ambiguities
 - A way to start with a misaligned detector
- creation or a detector

Example, tracking in dense environment

Kalman Filter (2)

- Extremely high level of accuracy control
 - Given by stringent mathematical validation
 - Detailed material description

ontrol dation

Kalman Filter (3)

- Extremely high level of accuracy control
 - Given by stringent mathematical validation
 - Detailed material description

Example on OpenDataDetector (Geant4 simulation)

Fitters (2) - Gaussian Sum Filter

- Gaussian Sum Filter has been validated on Open Data Detector
 - shows nice performance on Geant4 simulated results
 - Is designed as a re-fitter, i.e. after electron pattern recognition
- Electron pattern recognition not yet implemented
 - start with concept from ATLAS to enlarge window if electron hypothesis is triggered ...

Fitters (3) - Global Minimisation

- Global chi2 fitter progress
 - First pipe-line on OpenDataDetector implemented
- Material effect integration not yet implemented - Exists in a python based prototype

All surfaces

Combinatorial Kalman Filter (1)

- Track finding implementation using a Combinatorial Kalman Filter (CKF)
 - Achieves almost perfect technical efficiency for muons
- Runs on top of different seeding strategies
 - Triplet seeding
 - Orthogonal seed finder
 - GNN
 - New seeding for telescope detectors

Combinatorial Kalman Filter (2)

- Speed performance optimisation
 - Work on a new stepper has started
 (based on Symbolic math transcription)
- Combinatorial Kalman filter updates
 - Improved branch stopping logic introduced
 - Smoothing separated from forward filtering
 - New, alternative CKF with external propagator steering in development

ttbar @ <µ> ~200

Vertex reconstruction

- ACTS implements a fully fledged primary vertex reconstruction suite - Iterative Finder + Billoir Fitter
 - MultiAdaptiveVertexFinder + Fitter
 - Optimised for very high track and vertex multiplicities (HL-LHC)
 - Was the first module to be deployed in ATLAS from ACTS
 - Huge speed update with identical results

Vertex reconstruction R&D: fully time-aware

- Introduction of time in all components of vertex reconstruction
 - full exercise on OpenDataDetector in progress

ODD Simulation $t\bar{t}$, $\langle \mu \rangle = 200$

R&D line: parallelisation

- First chain runs on OpenDataDetector in stand-alone - Performance (physics/computing) evaluation to start
- Aim is to be able to evoke a traccc reconstruction chain from ACTS

Integration of 'traccc' suite as Plugins started (talk by Beomki Yeo, tomorrow)

R&D line: machine learning

ML based ambiguity solver

R&D line: machine learning

NN based cluster position / calibration - NN based clusterization available

R&D line: machine learning

• Graph network based pattern recognition with CKF on top

Preliminary results show that the CKF can be restricted to a branch number = 1 if first two (short) strip lay<mark>ers are also</mark> included (taking best hit only)

Collaborating

ACTS is Open Source and invites contributions, corrections, interactions

https://github.com/acts-project/acts

Clone:

https://github.com/<username>/acts

Develop & Make a PR

Make an Issue: https://github.com/acts-project/acts

Ask on mattermost: https://mattermost.web.cern.ch/acts/channels/town-square

Development, Exchange with Experts, Collaboration, Code review, CI testing

Discuss at the open develops meeting https://indico.cern.ch/category/7968/ Tuesday 17:00, CE(S)T

new, periodic Asia-friendly slot 9:00 CE(S)T ~ 1/month

Contributing

Pull requests come with a template that guides through a proper submission

semantic naming: feat, doc, refactor, fix

refactor!: MTJ stores measurement as jagge
paulgessinger wants to merge 8 commits into acts-project:main from paul
Conversation 9 -→ Commits 8 F. Checks 35
paulgessinger commented Laays ago • edited -
Addresses # 516.
<pre>x x x x x x meaningful description M1, D=3 M2, D=1 M3, D=2</pre>
BREAKING CHANGE: Acts::MultiTrajectory measurement access methods of
<pre>- constexpr auto measurement(IndexType measIdx) const; + template <size_t measdim=""> + constexpr auto measurement(IndexType measIdx) const;</size_t></pre>
and
<pre>constexpr auto measurementCovariance(IndexType covIdx) + template <size_t measdim=""></size_t></pre>
+ cu stexpr auto measurementCovariance(IndexType covIdx)

Community

Community-Supported Components: Acts

Weekly dev meeting with involvement of users at multiple experiments

Status of work visibility through presentations

Example of agile in community software

acts-project/acts: PRs merged between 2022-09-13 and 2022-09-20 II

- docs: Update logging doc, add info on thresholds (PR#1520) by @paulgessinger, no assignee, merged on 2022-09-16
- l- docs: update markdown cheatsheet (PR#1524) by @benjaminhuth, no assignee, merged on 2022-09-16
- feat: Exa.TrkX with torchscript backend (PR#1473) by @benjaminhuth, no assignee, merged on 2022-09-16
- docs: Gaussian Sum Filter (PR#1403) by @benjaminhuth, assigned to @benjaminhuth, merged on 2022-09-16
- fix: Added missing return to seedfinder::CreateSeedsForGroup (PR#1521) by @guilhermeAlmeida1, no assignee, merged on 2022-09-16
- I= refactor: Improve material mapping speed (PR#1458) by @Corentin-Allaire, assigned to @asalzburger, merged on 2022-09-16
- feat: Allow configurable particle selection and reproducible seeds for Geant4 (PR#1428) by @benjaminhuth, no assignee, merged on 2022-09-19
- I- chore: Add priority merge label to kodiak config (PR#1532) by @paulgessinger, no assignee, merged on 2022-09-19

acts-project/acts: Open PRs 1

- refactor: improve full_chain_odd.py example (PR#1538) by @andiwand, assigned to @timadye, updated on 2022-09-20
- In refactor: MTJ stores measurement as jagged vector (PR#1512) by @paulgessinger. A no assignee, updated on 2022-09-20
- Feat: Hough Transform first implementation (PR#1305)
 by Øjahreda, A no assignee, updated on 2022-09-19
- Fin feat: Material Mapping Auto-tuning script with Orion (PR#1464) by @Corentin-Allaire, in no assignee, updated on 2022-09-16
- Des: Exa.TrkX (PR#1517)
 by @benjaminhuth, no assignee, updated on 2022-09-16
- fix: Refactor and fix component merging for GSF (PR#1364) by @benjaminhuth, assigned to @asalzburger, updated on 2022-09-13
- feat: Add a tool for writing B-fields to disk in CSV format (PR#1470) by @stephenswat, assigned to @stephenswat, updated on 2022-09-07

Final remarks

- The ACTS project has grown immensely during the last years
 - a very feature rich toolbox that is still enlarging
 - increased focus on consolidation & performance tuning has started

- Collaboration is invited
 - This is an open source project where we want to serve many clients
 - Have the resources to optimise known algorithms and concepts
 - Free resources to do innovative R&D

Links

acts-developers@cern.ch acts-users@cern.ch acts-parallelization@cern.ch acts-machineleaning@cern.ch acts-telescope@cern.ch

 (\bullet)

Mattermost

Code base for acts-project, R&D lines, spin offs

Communication channel

Email lists

Online documentation (built from latest snapshot)

Write-up documentation

18–21 Nov 2024 Chateau de Bossey

Europe/Zurich timezone

ACTS Developers Workshop 2024

https://indico.cern.ch/event/1397634/

Plotting: actsvg

2D plotting library dedicated for tracking

- No dependencies, C++ header only, no ACTS dependency
 - ACTS and detray translate into

actsvg::meta objects

- Plot geometry & geometric relations (on mouse over effects for debugging)
- Plot clusters & cluster information

Community: Open Data Detector & key4hep

Evolution of TrackML detector

- Re-implemented in DD4Hep to enable full/fast simulation
- Quasi-realistic feedback to allow real-life scenario testing of algorithms
- Supports TrackML output format through ACTS binding (work ongoing to also support edm4hep)

ACTS integration into key4hep SW stack

- Codename: acts4hep
- Summer student project to make a ACTS Gaudi based demonstrator

[AS, CHEP2023 Parallel talk]

