Alignment of BESIII Drift Chamber

Linghui Wu For the BESIII MDC alignment working group

Workshop of tracking in particle physics experiment, Zhengzhou, May 18, 2024

Misalignment of tracker

- In particle physics experiment, tracker is required to provide good spatial resolution for momentum reconstruction
 - ~100 μm with gaseous detectors, like DC or TPC
 - ~10 μ m with silicon trackers
- Mechanical imperfection in the construction and assembly of the detector (a few hundred microns) may has significant impact on momentum measurement
- Track-based alignment is essential for track reconstruction

Shift of residuals

BESIII drift chamber

- 6792 cells in 43 cylindrical layers
 - Inner chamber: Layer 1 ~ 8
 - Outer chamber:
 - Layer 9 ~ 20 in six steps
 - Layer 21 ~ 43 fixed at big out endplates

Outer chamber

Sources of Misalignment

- Mechanical imperfection in assembly of endplates
 - 16 components
 - Inner section, 6 steps and outer section of both ends
- Single wire displacement

Misalignment from assembly of endplates

• Mechanical error ~ 200 μ m

Installation of inner chamber

Single wire displacements

item	$\mathrm{rms}/\mathrm{\mu m}$	
	sense wire	field wire
hole location	25.0	25.0
feedthrough in hole	6.3	6.3
crimp pin hole	12.5	12.5
wire in pin hole	31.3	10.0
total rms	42.4	30.3

Alignment parameters

- 6 degree of freedoms for each component
 - Translation in x, y and z
 - Rotation in x, y and z
- Some degree of freedoms constrained to guarantee the stability and avoid weak modes
 - θx, θy, δz
- 48 alignment parameters in total and the average displacement of both big endplates fixed

- Nominal wire position
- Actual wire position

Software alignment methods

- Parameterization of residual dependence \checkmark
- Millepede matrix method \checkmark
- Kalman filter method
- Kalman filter track fit based alignment (to be studied)

Parameterization of residual dependence

• Estimate alignment parameters from fitting residual distribution

Millepede matrix method

• d_{track} as a function of alignment parameters (a) and track parameters (p) in theory

$$d_{track} = f(\boldsymbol{p}^{local}; \boldsymbol{a}^{global})$$

• For a set of measurements, the residual of the *i*-th measurement in the *k*-th track is defined as:

$$r_{ki} = d_{meas}^{(k,i)} - d_{track}^{(k,i)} = d_{meas}^{(k,i)} - \left((\boldsymbol{\delta}_{ki}^{local})^T \boldsymbol{p}_k + (\boldsymbol{d}_{ki}^{global})^T \boldsymbol{a} \right)$$

• For simultaneous fit of all global and local parameters, χ^2 is defined as

$$\chi^2 = \sum_{data \ sets} \left(\sum_{events} \left(\sum_{tracks} \left(\sum_{hits} w_{ki} r_{ki}^2 \right) \right) \right)$$

- Use least square method and a matrix equation with large dimensions is obtained (see next page)
- Solve the matrix equation.

Millepede matrix method

- C_k is a $n \times n$ symmetric matrix which is correlative with global parameters (*n* is the number of global parameters)
- Γ_k is a $m \times m$ symmetric matrix which is correlative with the local parameters of the *k*-th track (*m* is the number of local parameters in an event)
- H_k is a rectangular $n \times m$ matrix, which correlates the parameters of track k with the alignment parameters.
- The first item on the left of the above equation is a huge symmetric matrix with dimensions $(n + m \times N_{track})$

Validation with toy MC

Alignment of displacement in x

- Fast convergence
- Displacements well corrected

Result of 100 input-output test

12

Kalman filter method

$$\boldsymbol{d}_{meas} = \boldsymbol{f}(\boldsymbol{p}_0, \boldsymbol{a}_o) + \boldsymbol{H}(p - p_0) + \boldsymbol{D}(a - a_0) + \boldsymbol{\epsilon}$$

 $m{H} = rac{\partial m{f}}{\partial m{p}}(m{p}_0,m{a}_0)$ For local (track) parameters $m{D} = rac{\partial m{f}}{\partial m{a}}(m{p}_0,m{a}_0)$ For global (alignment) parameters

$$a_1 = a_0 + E_0 D^T W[m - f(p_0, a_0]]$$

 $\boldsymbol{E}_1 = \boldsymbol{E}_0 - \boldsymbol{E}_0 \boldsymbol{D}^T \boldsymbol{W} \boldsymbol{D} \boldsymbol{E}_0$

 $\boldsymbol{W} = [\boldsymbol{\alpha}^{(k)}\boldsymbol{V} + \boldsymbol{H}\boldsymbol{C}_{0}\boldsymbol{H}^{T} + \boldsymbol{D}\boldsymbol{E}_{0}\boldsymbol{D}^{T}]^{-1}$

 $\alpha(k)$: annealing factor of the k-th track V: covariance matrix of ϵ

ε: vector of measurement errors

Validation with toy MC

- Alignment parameters updated after each track reconstruction
- Hard to be implemented in our data processing framework

Alignment using BESIII data

Misalignment effect in data

- Serious misalignment effect in psi(3770) data in 2009
- Momentum resolution is bad

Alignment procedure of BESIII DC

- Preliminary result using parameterization of residual dependence to correct big displacements
 - Track fit using hits of the big outer endplate to align the inner components
- Precise alignment with Millepede matrix method
 - Millepedell implemented to combine cosmic and dimuon data samples

Alignment result

- Big displacements in x direction
 - Up to more than 500 μm

18

Momentum resolution after alignment

Momentum resolution improved significantly

Comparison with CLEO-c

Alignment of CGEM tracker

CGEM inner tracker

- Upgrade of BESIII inner tracker using CGEM detector
- Alignment of 3 CGEM layers using cosmic ray test finished

3D event display

Alignment with Millepede

- Misalignment between 3 layers are studied
 Position of innermost layer is used as reference
 Each sheet of Layer2&3 is treated individually
 6 parameters for each component
 Dy fixed to 0 due to lack of horizontal tracks
- Both the residuals of X and V are considered

24

Improvement of residual distribution with alignment

Residual vs z

Before alignment

After alignment

Improvement of chisquare distribution

 χ^2 distribution improved significantly after alignment

Alignment of CGEM+ODC

- Alignment of CGEM-IT + ODC will be much more complicated due to
 - Magnetic field
 - more degree of freedoms
 - limitation of precision in z
 - correlation with the Lorentz angle

• Alignment based on track fit with Kalman filter will be considered

Summary

- Track-based alignment is essential to improve tracking precision
- BESIII drift chamber is well aligned using residual parameterization and Millepede methods
- CGEM tracker is well aligned with cosmic ray data
- Next to do: alignment of CGEM+ODC