# Alignment of BESIII Drift Chamber 

Linghui Wu<br>For the BESIII MDC alignment working group

Workshop of tracking in particle physics experiment, Zhengzhou, May 18, 2024

## Misalignment of tracker

- In particle physics experiment, tracker is required to provide good spatial resolution for momentum reconstruction
- ~100 $\mu \mathrm{m}$ with gaseous detectors, like DC or TPC
- $\sim 10 \mu \mathrm{~m}$ with silicon trackers
- Mechanical imperfection in the construction and assembly of the detector (a few hundred microns) may has significant impact on momentum measurement
- Track-based alignment is essential for track reconstruction


Reconstruction with uncorrected detector


Shift of residuals


## BESIII drift chamber

- 6792 cells in 43 cylindrical layers
- Inner chamber: Layer 1 ~ 8
- Outer chamber:
- Layer 9 ~ 20 in six steps
- Layer 21 ~ 43 fixed at big out endplates

Outer chamber


## Sources of Misalignment

- Mechanical imperfection in assembly of endplates
- 16 components
- Inner section, 6 steps and outer section of both ends
- Single wire displacement


## Misalignment from assembly of endplates



## Single wire displacements

| item | $\mathrm{rms} / \mu \mathrm{m}$ |  |
| :---: | :---: | :---: |
|  | sense wire | field wire |
| hole location | 25.0 | 25.0 |
| feedthrough in hole | 6.3 | 6.3 |
| crimp pin hole | 12.5 | 12.5 |
| wire in pin hole | 31.3 | 10.0 |
| total rms | 42.4 | 30.3 |

- Much less than the error in assembly of endplates



## Alignment parameters

- 6 degree of freedoms for each component
- Translation in $x, y$ and $z$
- Rotation in $x, y$ and $z$
- Some degree of freedoms constrained to guarantee the stability and avoid weak modes

- $\theta x, \theta y, \delta z$
- 48 alignment parameters in total and the average displacement of both big endplates fixed

- Nominal wire position
- Actual wire position


## Software alignment methods

- Parameterization of residual dependence $\vee$
- Millepede matrix method $V$
- Kalman filter method
- Kalman filter track fit based alignment (to be studied)


## Parameterization of residual dependence



- Estimate alignment parameters from fitting residual distribution


## Millepede matrix method

- $d_{\text {track }}$ as a function of alignment parameters (a) and track parameters $(p)$ in theory

$$
d_{t r a c k}=f\left(\boldsymbol{p}^{l o c a l} ; \boldsymbol{a}^{\text {global }}\right)
$$

- For a set of measurements, the residual of the $i$ - $t h$ measurement in the $k$ - $t h$ track is defined as:

$$
r_{k i}=d_{m e a s}^{(k, i)}-d_{\text {track }}^{(k, i)}=d_{\text {meas }}^{(k, i)}-\left(\left(\boldsymbol{\delta}_{k i}^{l o c a l}\right)^{T} \boldsymbol{p}_{k}+\left(\boldsymbol{d}_{k i}^{g l o b a l}\right)^{T} \boldsymbol{a}\right)
$$

- For simultaneous fit of all global and local parameters, $\chi^{2}$ is defined as

$$
\chi^{2}=\sum_{\text {data sets }}\left(\sum_{\text {events }}\left(\sum_{\text {tracks }}\left(\sum_{\text {hits }} w_{k i} r_{k i}^{2}\right)\right)\right)
$$

- Use least square method and a matrix equation with large dimensions is obtained (see next page)
- Solve the matrix equation.


## Millepede matrix method

$\left(\begin{array}{c|c|c|c}\sum_{k} C_{k}^{\text {global }} & \cdots & H_{k}^{\text {global-local }} & \cdots \\ \hline \vdots & \ddots & 0 & 0 \\ \hline\left(H_{k}^{\text {global-local }}\right)^{T} & 0 & \Gamma_{k}^{\text {local }} & 0 \\ \hline \vdots & 0 & 0 & \ddots\end{array}\right) \times\left(\begin{array}{c}a^{\text {global }} \\ \hline \frac{\sum_{k} b_{k}^{\text {global }}}{} \\ \hline \frac{p_{k}^{\text {local }}}{\vdots} \\ \hline\end{array}\right)=\binom{\beta_{k}^{\text {local }}}{\vdots}$

- $\quad \mathrm{C}_{\mathrm{k}}$ is a $n \times n$ symmetric matrix which is correlative with global parameters ( $n$ is the number of global parameters)
- $\quad \Gamma_{\mathrm{k}}$ is a $m \times m$ symmetric matrix which is correlative with the local parameters of the $k$ - $t h$ track ( $m$ is the number of local parameters in an event)
- $\quad \mathrm{H}_{\mathrm{k}}$ is a rectangular $n \times m$ matrix, which correlates the parameters of track $k$ with the alignment parameters.
- The first item on the left of the above equation is a huge symmetric matrix with dimensions ( $n+m \times N_{\text {track }}$ )


## Validation with toy MC

Alignment of displacement in x


- Fast convergence
- Displacements well corrected

Result of 100 input-output test


## Kalman filter method

$$
\begin{aligned}
\boldsymbol{d}_{\text {meas }} & =\boldsymbol{f}\left(\boldsymbol{p}_{0}, \boldsymbol{a}_{o}\right)+\boldsymbol{H}\left(p-p_{0}\right)+\boldsymbol{D}\left(a-a_{0}\right)+\boldsymbol{\epsilon} \\
\boldsymbol{H} & =\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{p}}\left(\boldsymbol{p}_{0}, \boldsymbol{a}_{0}\right) \quad \text { For local (track) parameters } \\
\boldsymbol{D} & =\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{a}}\left(\boldsymbol{p}_{0}, \boldsymbol{a}_{0}\right) \quad \text { Foctor of measurement errors } \\
\boldsymbol{a}_{1} & =\boldsymbol{a}_{0}+\boldsymbol{E}_{0} \boldsymbol{D}^{\boldsymbol{T}} \boldsymbol{W}\left[\boldsymbol{m}-\boldsymbol{f}\left(\boldsymbol{p}_{0}, \boldsymbol{a}_{0}\right]\right. \\
\boldsymbol{E}_{1} & =\boldsymbol{E}_{0}-\boldsymbol{E}_{0} \boldsymbol{D}^{\boldsymbol{T}} \boldsymbol{W} \boldsymbol{D} \boldsymbol{E}_{0} \\
\boldsymbol{W}=\left[\alpha^{(k)} \boldsymbol{V}+\boldsymbol{H} \boldsymbol{C}_{0} \boldsymbol{H}^{\boldsymbol{T}}+\boldsymbol{D} \boldsymbol{E}_{0} \boldsymbol{D}^{\boldsymbol{T}}\right]^{-1} & \alpha(\mathrm{k}) \text { : annealing factor of the k-th track } \\
& \text { V: covariance matrix of } \boldsymbol{\varepsilon}
\end{aligned}
$$

## Validation with toy MC

Different annealing strategies

|  | $\alpha^{(1)}$ | $\alpha^{(n)}$ | $\alpha^{(k)}$ |
| :---: | :---: | :---: | :---: |
| A | 1 | 1 | 1 |
| B | 10000 | 10000 | 10000 |
| C | 10000 | 1 | $10000^{\frac{n-k}{n-1}}$ |

n : number of tracks
$\longrightarrow$ Standard Kalman filter

A


B

c


- Alignment parameters updated after each track reconstruction
- Hard to be implemented in our data processing framework

Alignment using BESIII data

## Misalignment effect in data

- Serious misalignment effect in psi(3770) data in 2009
- Momentum resolution is bad




## Alignment procedure of BESIII DC

- Preliminary result using parameterization of residual dependence to correct big displacements
- Track fit using hits of the big outer endplate to align the inner components
- Precise alignment with Millepede matrix method
- Millepedell implemented to combine cosmic and dimuon data samples



## Alignment result

- Big displacements in $x$ direction
- Up to more than $500 \mu \mathrm{~m}$




## Momentum resolution after alignment




- Momentum resolution improved significantly


## Comparison with CLEO-c



# Alignment of CGEM tracker 

## CGEM inner tracker

- Upgrade of BESIII inner tracker using CGEM detector
- Alignment of 3 CGEM layers using cosmic ray test finished



## 3D event display



## Alignment with Millepede

Misalignment between 3 layers are studied
$>$ Position of innermost layer is used as reference
$>$ Each sheet of Layer2\&3 is treated individually
$>6$ parameters for each component
$>$ Dy fixed to 0 due to lack of horizontal tracks
$>$ Both the residuals of $X$ and $V$ are considered


## Improvement of residual distribution with alignment



## Residual vs z



## Improvement of chisquare distribution


$\chi^{2}$ distribution improved significantly after alignment

## Alignment of CGEM+ODC

- Alignment of CGEM-IT + ODC will be much more complicated due to
- Magnetic field
- more degree of freedoms
- limitation of precision in z
- correlation with the Lorentz angle
- Alignment based on track fit with Kalman filter will be considered



## Summary

- Track-based alignment is essential to improve tracking precision
- BESIII drift chamber is well aligned using residual parameterization and Millepede methods
- CGEM tracker is well aligned with cosmic ray data
- Next to do: alignment of CGEM+ODC

