An AM Approach L1 Tracking Trigger for CMS Phase 2 Upgrade

Tsinghua University

Workshop of Tracking in Particle Physics Experiments Zhengzhou University May 18, 2024

Contents

- Motivation
- System overview
 - Multiplex in space and time
 - Associative Memory (AM) introduction
- System demonstration
 - Hardware introduction
 - Demonstrator at Fermilab
 - Performance
- Summary

Zhen Hu

2

Physics Motivation: HL-LHC Trigger Upgrade

- High Luminosity LHC
 - 40 MHz bunch crossing
 - Up to 200 pileup (high occupancy)
 - Tons of data
- Current Level-1 Trigger will not work
 - Current maximum bandwidth
 - only 100 kHz (L1 output rate)
 - For HL-LHC, current trigger system would give
 - EG rate @25 GeV \rightarrow 100 kHz
 - Overall Trigger Rate \rightarrow > > 1000 kHz (unsustainable) to reach physics goals
 - Increasing trigger threshold →
 lose the opportunity of new
 physics with low threshold

- Upgrade trigger system
 - Must increase total bandwidth
 - Must increase trigger capabilities
 - Level-1 Tracking is a completely NEW handle

Track trigger advantage and challenge

- Silicon based tracking trigger is crucial for CMS Phase2 upgrade
 - Sharp turn-on efficiency curve
 - Background rate reduction → allows for low object threshold

Huge challenges

- How to handle readout of the entire tracker?
 - 260 M channel, 40 MHz, 100 Tbps data (after on-detector suppression using pTmodules), 2e4 hits
- 4 μ s latency:
 - Data distribution, track reconstruction, track fitting ...
- Silicon-based L1 tracking trigger has never been realized under these conditions

Solution : divide and conquer

Solution : divide and conquer

- Space parallel
 - 6*8 trigger tower
 - 100 Tbps \rightarrow ~2 Tbps per tower
- Time parallel

Zhen Hu

- 8x time multiplexing
- $25 \text{ ns} \rightarrow 200 \text{ ns}$

Conventional

ATCA full mesh

Huge amount of cabling work without ATCA

Solution : Associative Memory

7

Solution : Associative Memory

AM Pattern and Bank

- A pattern is a low resolution track
 - Made of 1 superstrip (SS) per layer
 - A SS is a group of adjacent strips

ATCA shelf

The full mesh backplane interconnections effectively blur the distinction between FPGAs, and allow data sharing in both space and time

ATCA shelf

We tested the data transfer performance for the full mesh back plan, Pulsar2b and RTM (10 Gbps)

100 Tbps / 48 tower / 400 links = 5 Gbps

- A custom ATCA full mesh enabled FPGAbased processor board
- Designed with the goal of creating a scalable architecture abundant in flexible, nonblocking, high bandwidth interconnections

ATCA shelf

We tested the data transfer performance between PRM and Pulsar2b (10 Gbps) and the interconnection between two FPGAs in PRM (16 Gbps) ATCA Processing Blade: Pulsar2b

PRM (Pattern Recognition Mezzanine Card)

IPMC (Intelligent platform management controller)

Pulsar2b RTM (Rear Transition Module)

ATCA shelf

Pulsar2b RTM (Rear Transition Module)

AM in FPGA: Overview

- AM in FPGA: very closely follows the AM ASIC (chip) design
 - Match two silicon tiers in ASIC with two modules in FPGA firmware
 - CAM Tier -> a 2D array of Pattern Modules
 - I/O Tier -> fired roads serialization and output
 - Pipelined operation
 - CAM tier: processes pattern matching with stubs for current event N
 - I/O tier: outputs road addresses for event
 N-1 at the same time
- CAM tier logic is optimized for 7-Series/UltraScale FPGA architecture

Excellent hardware performance

- ATCA shelf
 - 10 blades for parallel processing
 - Full mesh backplane is a natural solution for time multiplexing
 - All of the 56 bidirectional links among 8 Pulsar2b boards were tested at 10Gbps
- Rear Transition Module
 - 10 QSFP bidirectional links
 - 10 Gbps per link achieved
- PRM performance
 - Communication between
 Pulsar2b and PRM FPGAs
 - 10 Gbps achieved
 - Two latest generation of Xilinx FPGAs
 - Interconnection achieved 16.3 Gbps

Full system demonstration

Zhen Hu

Full system demonstration

Using the technology today to demonstrate track trigger feasibility

Full system demonstration at Fermilab

- Using the technology today to demonstrate tracking trigger feasibility
- For one Trigger Tower: two shelves fully loaded with Pulsar2b boards

Pattern Recognition Board (PRB) shelf

- 12 Pulsar2b with PRM Mezzanines
- Bandwidth between any pair of Pulsars is 20Gbps

Data Source Board (DSB) shelf

 12 Pulsar2b to Emulates the detector output of ~400 modules

120 QSFP+ fibers

- Each with 4 bidirectional lanes each running at 10Gbps
- Capable of sourcing up to 4.8 Tbps data with full shelf

Front view

Back view

Full system demonstration at Fermilab

Zhen Hu

• All Pulsar2b boards in the system are synchronized to a common master clock optical link

- 1. Provided by a CERN TTCcx board that encodes a simulated LHC 40MHz bunch crossing clock and various control signals
- 2. This optical link is received by one Pulsar2b board in each shelf
- 3. From this Pulsar2b board the master clock and other control bits are distributed to other Pulsar2b boards in the shelf over dedicated clocks on the ATCA backplane

Full system demonstration at Fermilab

- 1. Simulated event data is first loaded into the DSB FPGAs
- When triggered by bunch crossing signal, data is transmitted over the 120 QSFP+ optical links at full speed to the PRBs in the upper shelf
- 3. The 12 PRBs receive the incoming data, perform sophisticated time multiplexed data transfers over the full mesh ATCA backplane
- 4. Finally the event data sent to the FMC Pattern Recognition Mezzanine (PRM) cards

PRM firmware design

Zhen Hu

Demonstrator validation

Hardware and emulator perfectly matched

Zhen Hu

- Output from each stage validated bit-by-bit
- With the full chain demonstrator, we have measured
 - Latency, FGPA resource usage, efficiency, resolution

Latency well within specs

Data delivered to PRM starts/ends: @1.20 – 1.70 μ s Pattern Recognition output starts/ends: @1.84 – 2.34 μ s Track Fitting output starts/ends: @2.04 – 3.04 μ s

23

An example event in Vivado

	Behavioral Simulation - Functional - sim_1 - tb_PRM_top															
o Name		Value		E	, 645 6, 68	1.248 n	s).000 r	is 6, 841.6	67 ns 32	6, 95	, 983. 334 ns	7, 191. 666 ns				7, 716.666 ns
-		Volue		6, 600 1	s		<u> </u>	00 ns			7,000 ns	7, 200 ns		7,400 ns	7,600 ns	7, 800
	OC_reg[5:0]	(0,000,00	(0,000,	000,						(0, 00	0, 000, 00, 0, 0), (0, 000, 000, 00), <mark>0,</mark> 0), (0, 000, 000, 00	, 0, 0), (0, 00	10, 000, 00, 0, 0), (0, 000, 000, 00,	0, 0), (0, 000, 000, 00, 0,	0
	[5]	0,000,00	0, 000, 0	0, 0				_	_			0,000	I, 000, 00, 0, C)		1
	4	0,000,00	0, 000, 0	0, 0									0,000	, 000, 00, 0, 0		
A) Input Stubs	[3]	0,000,00	<u>0,000,0</u>	<u>)0, 0</u>				_					0, 000, 00			
	12 [2]	0,000,00	0, 000, 0	0,0			/	_				0	000, 000, 00,		· · ·	
		0,000,00	0,000,0	<u>, u</u>	_			_					0,000,000,0			
		0,000,00	0,000,0	<u>, 0, 0</u>									<u>, 000</u> . IIII - II.	Con	irmed c	n
	OC_to_DO_reg[5:0]	(0,000,00	(0,000,	000, 00, 0, 0), (0, 00		_	_			(0, 000, 000, 00, 0, 0), (0, 00	0,000,00,0,0),(0,00	0, 000, 00, 0,		rducero	
B) DO Stubs Input	S_to_DO_reg[5:0]	(0,000),((0,000)	(0,000), (0, 000),							(0, 0(10), (0, 000),	ы Па	luware	
	:OE_DO_in_reg	0							l i							
C) PRM SSID Input	sid[5:0][11:0]	000,000,	000, 000,	000, 000,			*						000, 000	0, 000, 000, 000		
	:oe	0														
D) PRAM Road Out	put oad[10:0]	000			00	0									000	
E) DO SSID Input	S_Read_reg[5:0]	(0,000),((0, 00	0), (0, 000)	, (0,)00),	(0, 000)	, (0,000),	(0, 000)						(0, 000), (0,)), (0, 000), (0, 000), (0	, 000), (0, 000)
	ilobalStubsArray_reg[3:0][5:0]	((0,00000	((0,000	00, 00000, D	0000, 0, 00), (0, (0	000, 00000,	00000, 0, 0	01		8 8	18 X 1	ŝ	<u>(((0, 00000, 00000, 00000, 0, 00</u>), (0, 00000, 00000, 0001	30, 0, 00), (0, 00000, 00
	[3][5:0]	(0,00000		(0, 000	00, 0000,	00000, 0	1, 00), (0, 01	00 0 0, 00000	,)0000, 0, 1	10), (0	, 00000, 00000, 00000, 0, 00), (I	0, 00 000, 00000, 00000,	0, 00), (0, 00	1000, 00000, 00000, 0, 00), (0, 000	00, 00000, 00000, 0, 00)	
E) Clobal Stuba	[2][5:0]	(0,00000		(0, 000	00, 0000,	00000,0	1, 00), (0, 01	0000, 00000	,)0000, 0, 1	10), (0	, 00000, 00000, 00000, 0, 00), (I	o, 00 000, 00000, 00000,	0,00), (0,00	1000, 00000, 00000, 0, 00), (0, 000	00, 00000, 00000, 0, 00)	
F) Giobai Stubs	[1][5:0]	(0,00000	(0, 0000	<u>0, 00000, 0</u> 0	000, 0, 00)	, (0, 000	00, 00000, 0	10000, 0, 00),		<u> </u>	10 8 1	ŧ	<u>((0, 00000, 00000, 00000, 0, 00)</u>	, (0, 00000, 00000, 00001	0, 0, 00), (0, 00000, 000
		(0,00000	(0, 0000	, 00000, 00	<u>100, 0, 00)</u>	(0,000	00, 0 0000, 0	0000, 0, 00.	,			_		<u>, (0, 00000, 00000, 00000, 0, 00)</u>	<u>, (0, 00000, 00000, 0000</u> 1	<u>, 0, 00), (0, 00000, 000</u>
	alid_GlobalStubsArray_reg	0				_										
		0						U								^───
	1. [2]	0														
	L [1]	0											<u> </u>			
	10 [0]	0												U U		
	:OverPt[3:0][47:0]	0000062			00000621	361. 000	0006218361	000006218	361. 00000	521836	1					000006218361,0000
	hiLongitudinal_0[3:0][47:0]	0000000			00000004	:6de, 0)(00000dc6de	00000010	61e,00000)Odet a	le					0000000a=6ae, 0000
	hiLongitudinal_1[3:0][47:0]	fffffd946			fffffd94	iba0, f i	fffd946ba0	fffffd946	iba0, fffff	19461 e	0					fffffd945ba0, fffi
	hiLongitudinal_2[3:0][47:0]	fffff6579			fffff657	9709, f	ff6579709	fffff6579	9709, fffff	57970	19					fffff6579709, fff
G) Track Candidate	hiLongitudinal_3[3:0][47:0]	ffffeabb6			ffffeabbl	i3dc, f i	ffeabb63dc	ffffeabbt	i3lc, ffffe	.bb63	le					(ffffeabb53dc, ffff
	hiTransverse_0[3:0][47:0]	00000283			00000283:	173, 00	0002831173	, 00 <mark>0002831</mark>	173, 00000	2831	3					000002831173,0000
	hiTransverse_1[3:0][47:0]	0000031a			0000 <mark>031a</mark> !	16a5, O)(00031a96c5	. 00 <mark>00031a</mark> 9	1625, 00000	31a 96 o	5					0000031a96c5, 0000
	hiTransverse_2[3:0][47:0]	fffffd2e8			fffffd2e	3664, f	fffd2e8664	ffffd2e8	6664, fffff	12e86	4					fffffd2e8664, fff
	.hiTransverse_3[3:0][47:0]	00000bee			0000Dbeel	36e8, 0)()00bee86e8	. 00 <mark>000Ъее8</mark>	16 <u>+</u> 8, 00000	ee8te	8					(00000bee36e8, 0000
	:otTheta[3:0][47:0]	0027dfbc			0027 lfbc	264, 0	27dfpc7264	.0027dfbc7	'284, 0027d	Ъс726	4					(0027dfbo7264,002)
	'hi0[3:0][47:0]	0000178f			0000178f1	94a 1, 0)(00178fb4a1	. 0000178ft	41, 00001	'8fb4e	1					0000178fp4a1,0000
	0[3:0][47:0]	ffffffda9f			337. <mark>-</mark> 302	.086 ns	3.334 ns	-141.66	7 ns 10	-29. 1	67 ns	208.332 ns				733. 332 ns
	1K2	1		-400 ns			-200 т	IS		, (Ins I I I I I I I I I I I I I I I I I I I	200 ns		400 ns	600 ns	800 ns

4xTF, 7191.666 ns to 7716.666ns = 525ns, 126 clk @240MHz This is with a selected ttbar + PU200 event with high tail of combinations

FPGA Resource Utilization (KU060)

Data Organizer only

Data Organizer and 8 Tracker Fitters

- Very light weighted design
- BlockRAM mainly used for DO
 - TF does not increase BlockRAM usage, leaving enough room for TF
- TF: modest increase in registers and DSP blocks
 - Plenty of room for parallel copies of the fitter

High efficiency up to PU250

- System is robust against higher luminosity or increase in hit occupancy
 - We demonstrate that the system reconstructs all tracks for events with PU250 within 2.5 μ s (no truncation needed)
 - Only for very high pT jet, truncation needed to meet the pipeline window

Tracking efficiency in ttbar+PU jets

Resolution

Excellent performance for L1 trigger application

p_T resolution

Zhen Hu

CMS

27

z₀ resolution

Summary

- Demonstrated with a vertical slice
 - Achieved excellent performance in terms of tracking efficiency and momentum resolution
 - Very low total latency (2.5 μ s): data dispatch to the trigger towers, pattern recognition, track fitting
- The success of the demonstration system
 - An existence proof of fast data delivery, fast pattern recognition and track fitting implemented using the full mesh ATCA and associative memory approach
 - Technology advancements could lead to reduced size of the system in the future
 - 1. "Charged Particle Tracking in Real-Time Using a Full-Mesh Data Delivery Architecture and Associative Memory Techniques", *JINST* 17, P12002 (2022)
 - 2. "A High-performance Track Fitter for Use in Ultra-fast Electronics", <u>Nucl. Instrum.</u> <u>Methods Phys. Res. A 935, 95-102 (2019)</u>

🖉 Zhen Hu

May 18, 2018

28

Backup

Group photo taken at recent weekly meeting at FNAL/LPC

Close collaboration: FNAL, Northwestern, U. Florida, Texas A&M, Brazil(SPRACE/UERJ) and China (Peking). With FULL support of LPC

T. Liu, AM + FPGA Overview

May 18, 2018

30

84

12/8/16

T. Liu, AM + FPGA Overview

May 18, 2018

85