

Development of first level track trigger at Belle II using Deep Neural Network

Yuxin Liu, SOKENDAI(KEK)

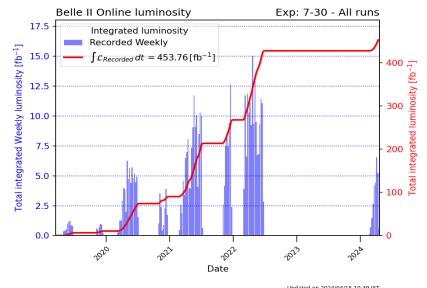
18th May, Workshop of Tracking in Particle Physics Experiments

SuperKEKB

An asymmetric e^-e^+ collider, Upgrade from KEKB. 7.0 GeV e^- and 4.0 GeV e^+ for $\Upsilon(4S)$

SuperKEKB aimed for a peak luminosity of 6×10^{35} cm⁻²s⁻¹, surpassing KEKB by 30 times and setting a world record; also with the integral luminosity as

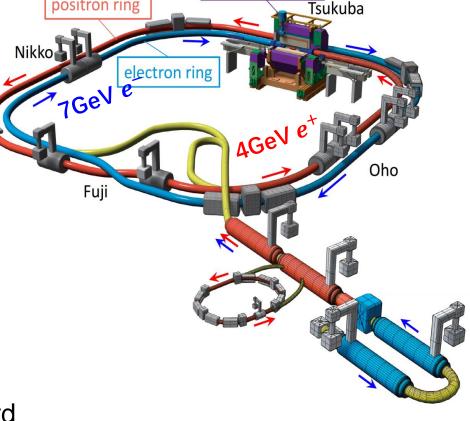
 $50 \ ab^{-1}$;



Achieved luminosity:

$$\mathcal{L}_{peak} = 4.65 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$$
, two time of KEKB record

$$\mathcal{L}_{int} = 453 \, fb^{-1}$$
; till April 2024



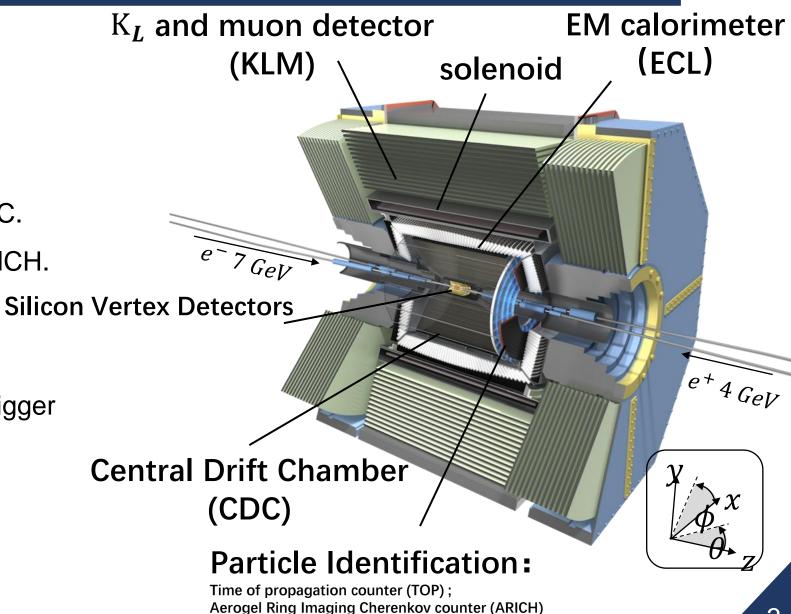
Belle II detector

positron ring

Belle II detectors

Belle II including:

- Tracking: Vertex detectors and CDC.
- particle identification: TOP and ARICH.
- Calorimeter: ECL.
- KL and muon detector.
- First level (L1) trigger, High level trigger
 (HLT) and DAQ.

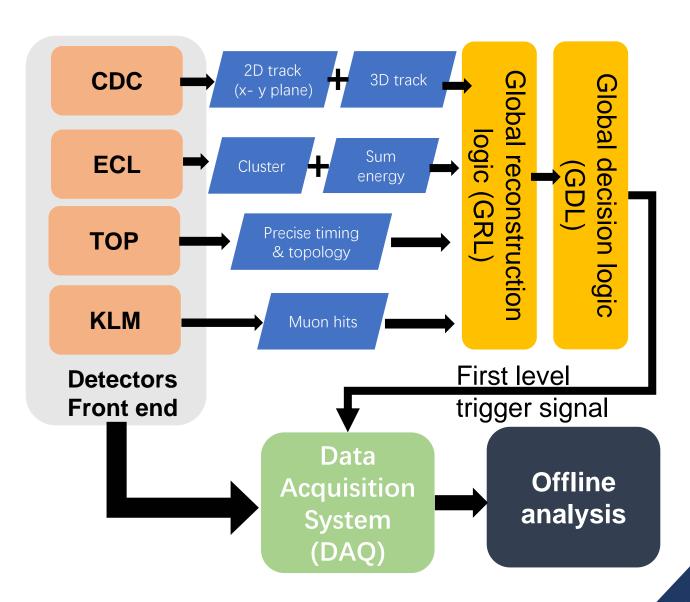


First level trigger

- Collected small set of data from sub-detectors
- Process data in real-time; short dead time
- Decide to record the event or not with fixed latency

Requirements for first level trigger system

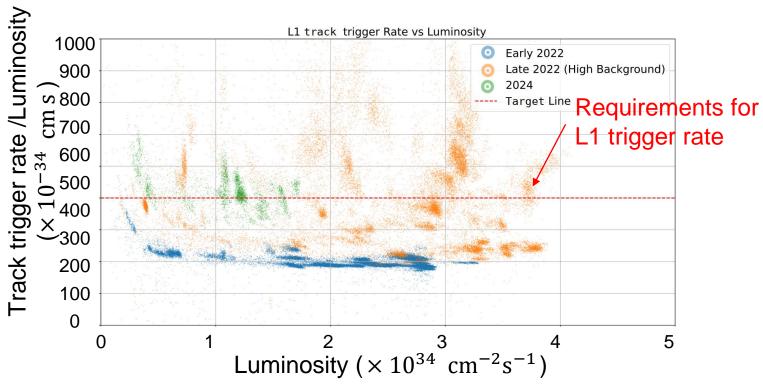
- 1. High efficiency for hadronic events
- 2. A maximum average trigger rate of 30kHz
- 3. A fixed latency of about 4.4 µs



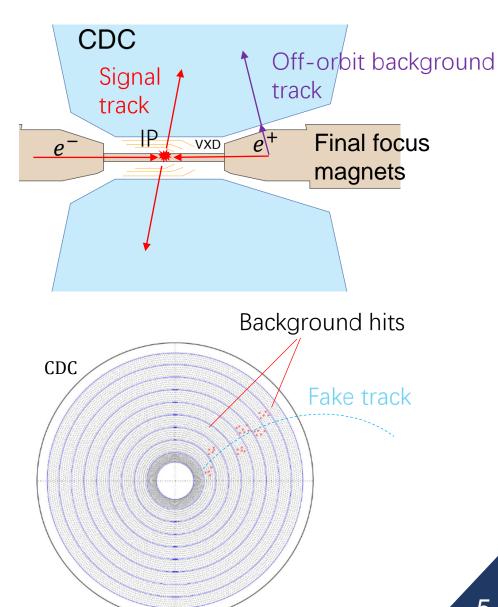
Motivation for track trigger upgrading

Requirements for first level trigger system

- High efficiency for hadronic events
- A maximum average trigger rate of 30kHz
- A fixed latency of about 4.4 µs

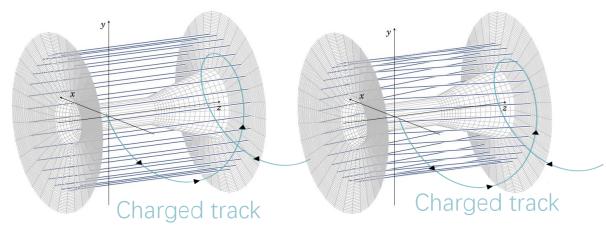


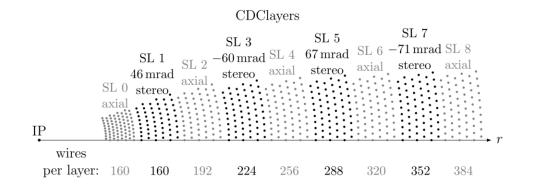
we aim to decrease the track trigger rate, thereby lowering the overall trigger rate.

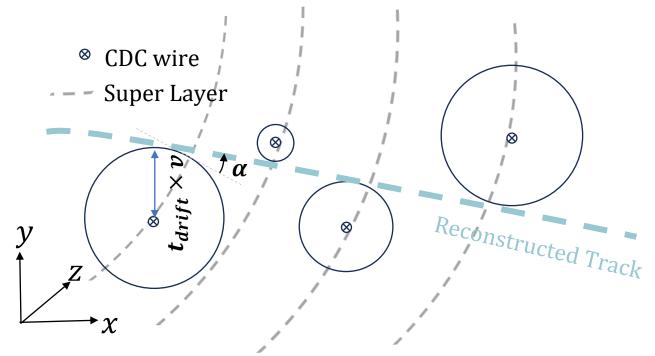


Central drift chamber

CDC Axial wires CDC Stereo wires (parallel to beam direction) (oblique to beam direction)

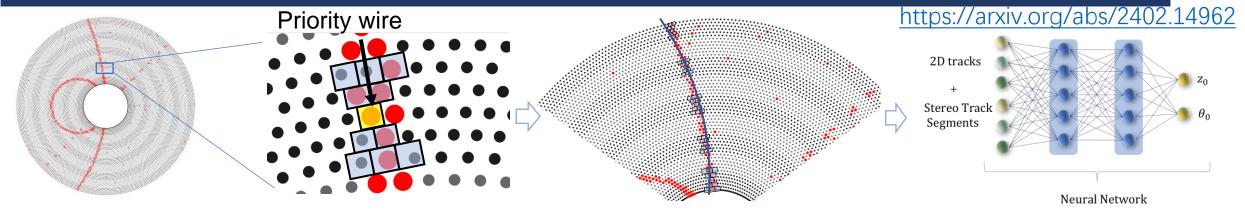






• Track reconstruction information: location for CDC hits (ϕ and r), drift time (t_{drift})

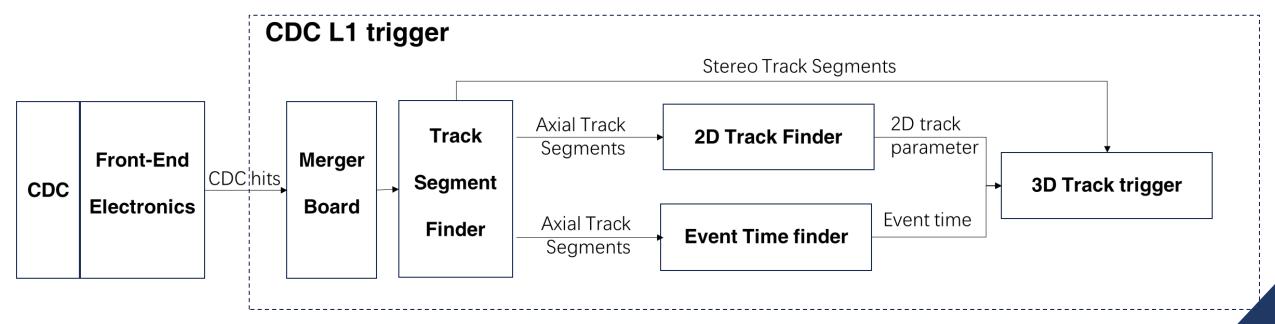
First level CDC track trigger



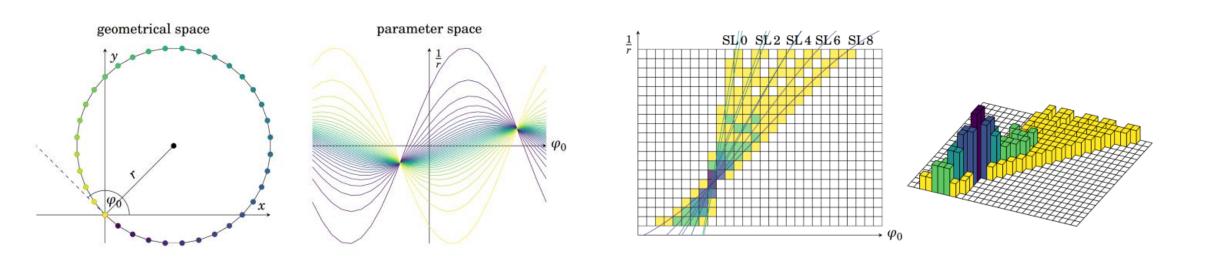
Built **Track Segment** (a set of **CDC** raw hits CDC wires) in every super layer using Hough transformation

Build **2D track** with **axial hits**

Build 3D track with stereo hits and 2D track using **Neural network**

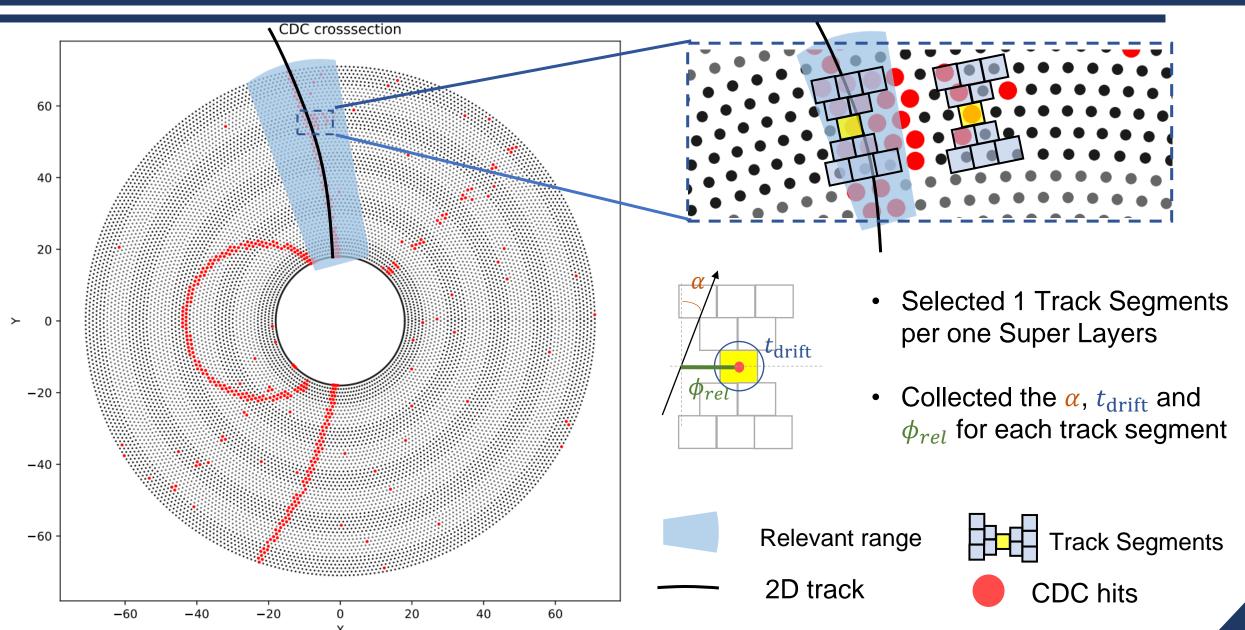


2D Hough transformation



- Mapping points in the geometric space to a parameter space with : $\rho(\phi) = \frac{2}{r_{TS}} \sin(\phi \phi_{TS})$
- Implementing a grid separation on the Hough parameter space.
- Counting hits cell and take the cells exceeding threshold as a track

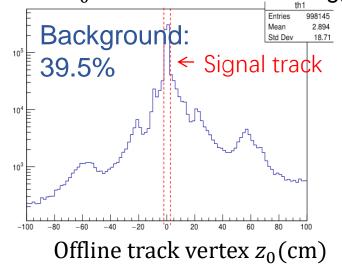
Inputs selection

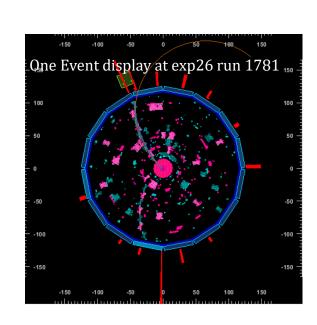


Why use deep neural network

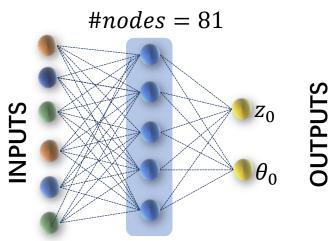
- Background ratio is still high
- Not only "Fitting", but also "selection"
- Fake track problems

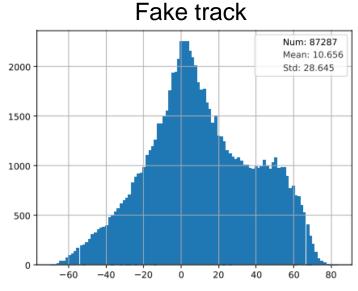
Tracks z_0 distribution after L1 trigger





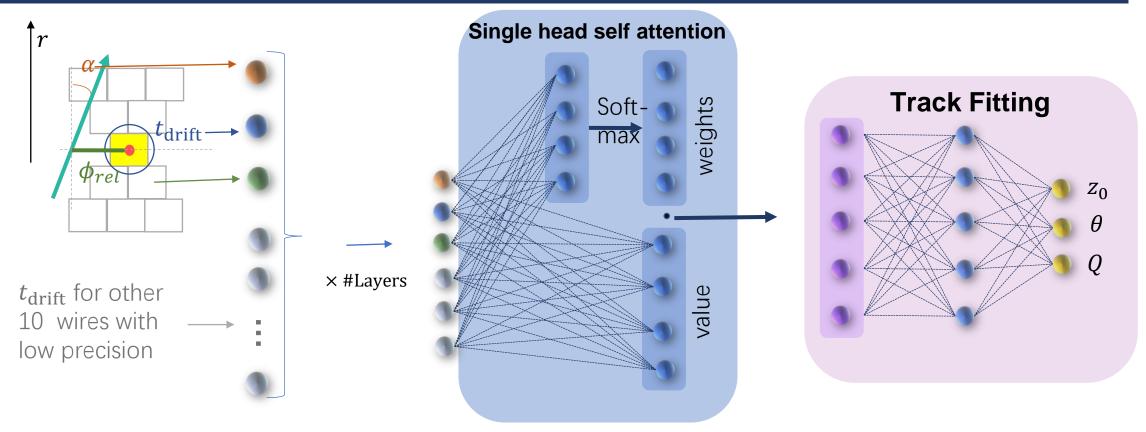
Current used MLP





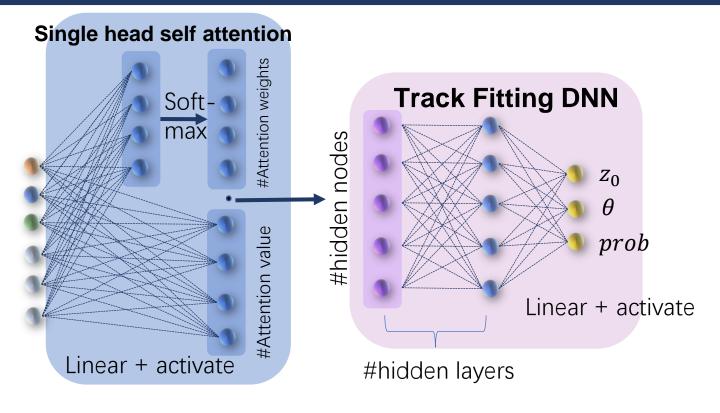
Neural-network track vertex z_0 (cm)

Neural-network inputs and architecture upgrade

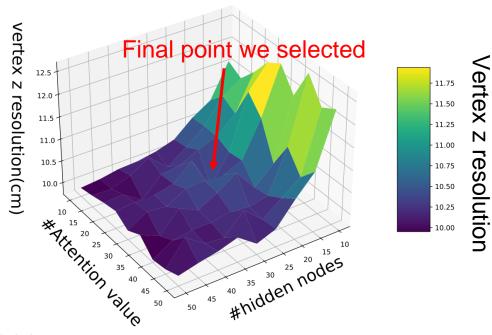


- Inputs: Drift time $t_{\rm drift}$, wires relative location ϕ_{rel} , Crossing angle α for priority wires + Drift time for all other wires
- Introduce the self-attention architecture to "focus" on certain inputs
- Output track vertex z_0 , track θ and classifier output Q

Neural-network training, optimization, quantization



Snapshot of optimization process



- Data: real physics run data with high background in late 2022.
- Using OPTOrch lib for model building and training, ⊚ □ PT UNA for parameters optimization

Parameter	#Attention value	#hidden nodes	#hidden layer	activate	precision	Total multiplier
Values	27	27	2	Leaky Relu	Float 16	4,185

Field Programmable Gate Arrays (FPGA)

FPGA contains:

-IOBs: Programmable in/out pins

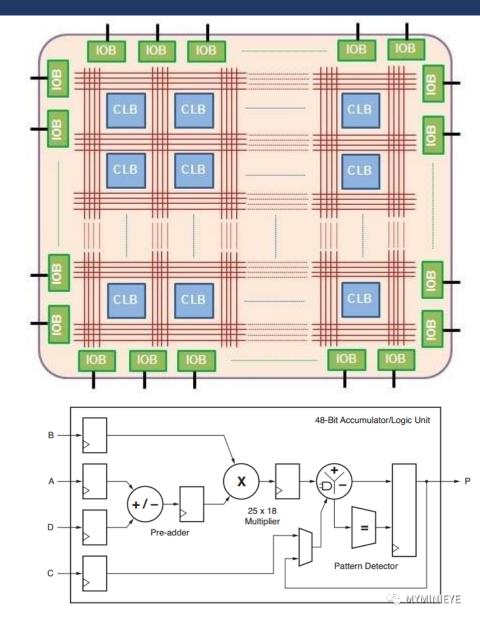
-CLBS : Configurable Logic Blocks

: Programmable interconnect

FPGA Advantage:

- Flexibility
- Extremely fast (~ ns)
- Fixed latency

DSP: a logic unit to process Multiply And Accumulate (MAC)



Digital Signal Processing (DSP) 48E1

Deep neural-network implementation

Upgrade

Universal Trigger board (UT) generation	3rd	4th
FPGA	Virtex 6 XC6VHX380	Virtex UltraScale XCVU160
DSP	864	1560
Logic gates	380k	2026k
Optical bandwidth	530 Gbps	1300 Gbps

Requirements for implementation:

- Latency: ~300ns (3rd) and ~600ns (4th)
- DSP limitation: 864 (3rd) and 1560 (4th)
- More than 5 times logic gates, can be used for multiply

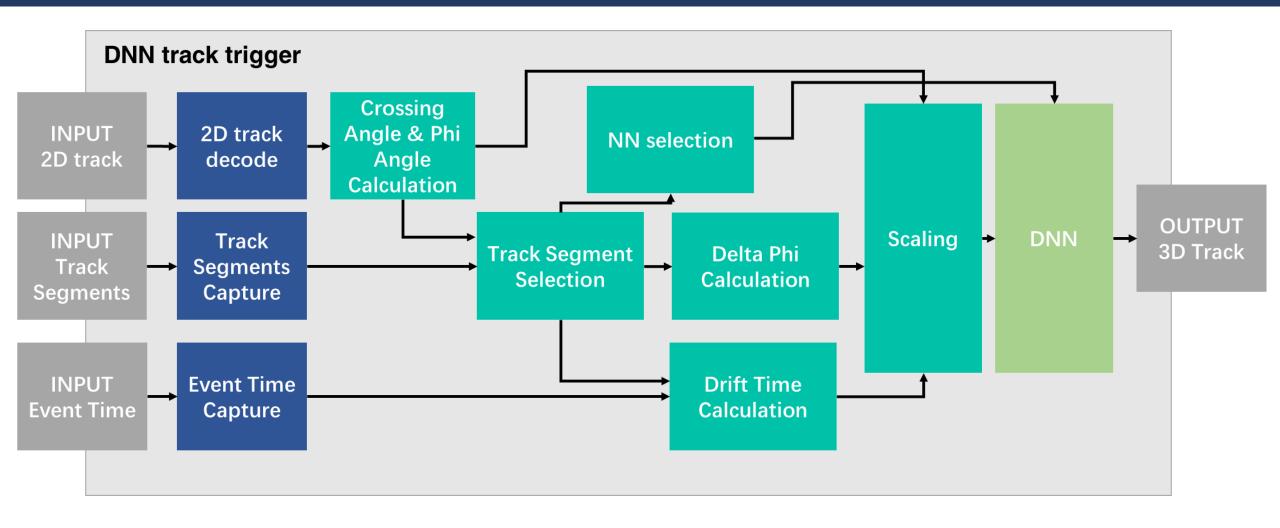
Belle II UT3

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B

Belle II UT4

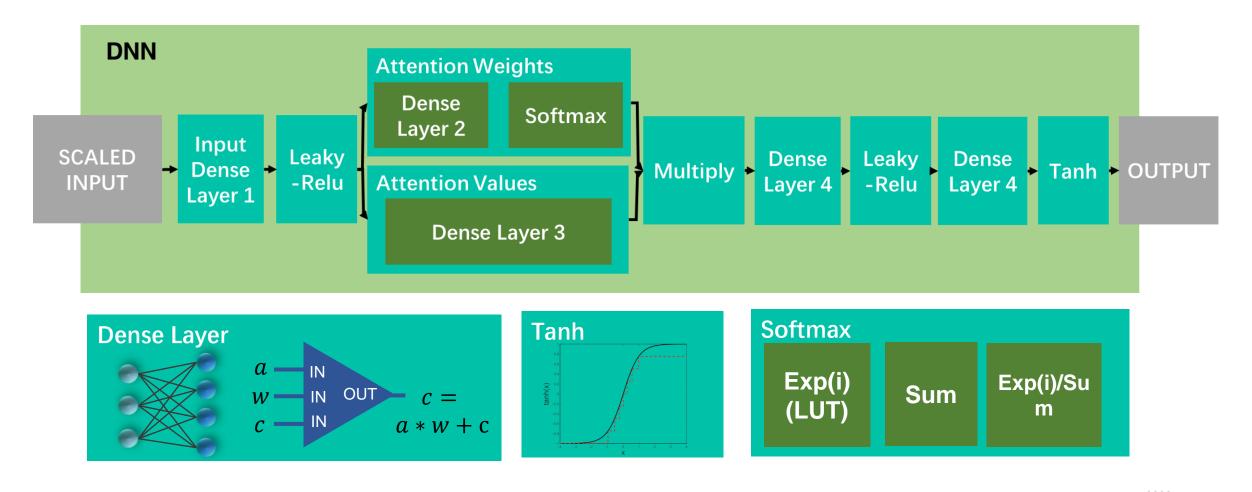
Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

DNN track trigger firmware architecture



- Input 2D track, track segments and event time pre-processing them to get scaled input for DNN.

Firmware architecture for DNN TRG

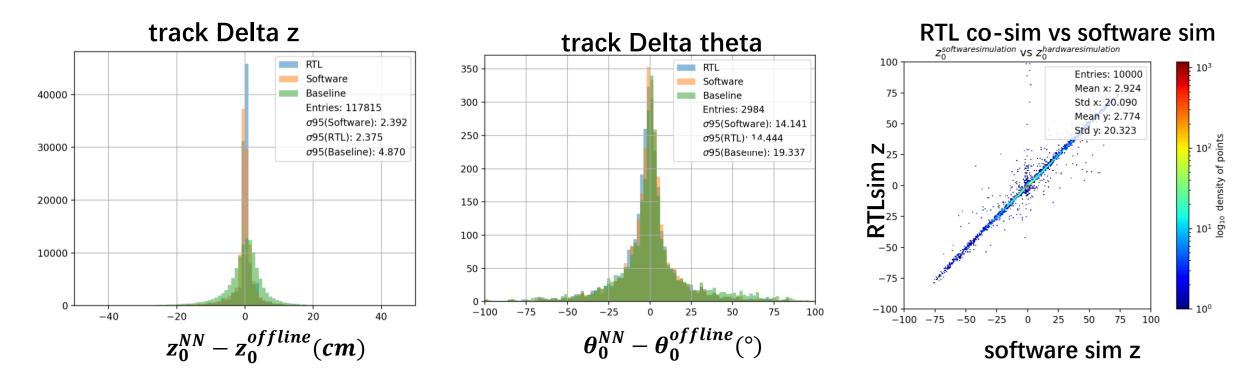


- Using look up table with 18 bits precision for $\exp(x)$ & $\tanh(x)$, refer to the function in
- hls 4 ml

- Directly use DSP for Leaky ReLU
- For Dense layer, using specific strategy to fit the requirements (next page)

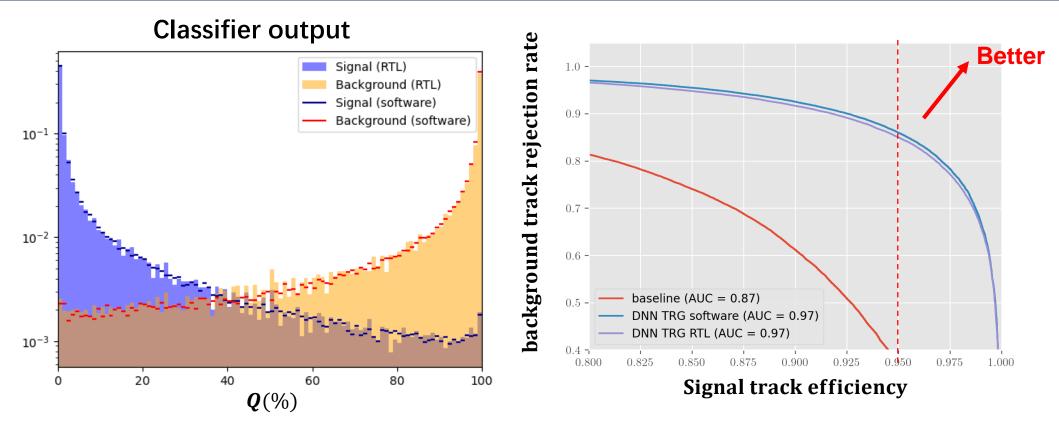
Performance: Register-transfer level (RTL) simulation

Performance RTL simulation and comparing performance with pytorch results



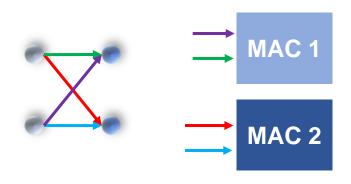
- $\sigma^{z_0}=2.4~cm$, about ½ as the baseline $\sigma^{z_0}=4.9~cm$; and $\sigma^{\theta}=14^{\circ}$ (baseline: $\sigma^{\theta}=19^{\circ}$)
- RTL and software simulation matched. Reducing precision did not loss the resolution.

Performance: Register-transfer level (RTL) simulation



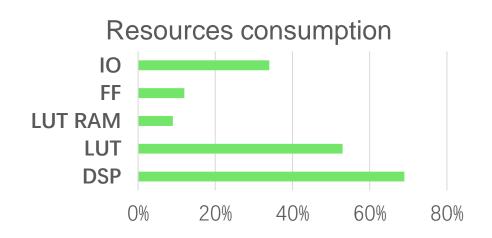
- *Q* output got consistent with software result
- AUC do not get large drop comparing RTL and software simulation
- At signal track efficiency at ~95%:
 Background rejection rate: NN track trigger (baseline): 39%; DNN track trigger: 85%

Implementation result



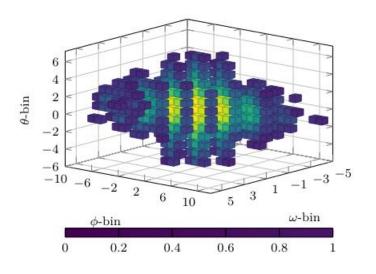
Reuse every multiplier by twice

- 4000 multiplier v.s. 1600 DSP
- Using both LUT and DSP to perform Multiply And Accumulate (MAC)
- Reuse each MAC twice.

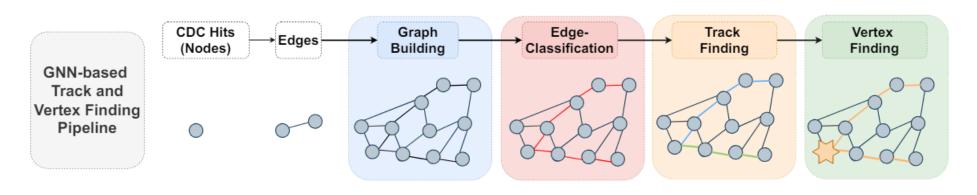


- Resource matched requirements, not timing violation
- Latency: 76 clock = 592.8 ns; require: < 600ns
- Pipeline Interval (dead time) = 32ns ;require: 32ns

Next step: 3D Hough and GNN



 $\frac{\text{3D Hough}}{\text{Transformation}} \\ (\theta, \phi, \omega)$



GNN track finding

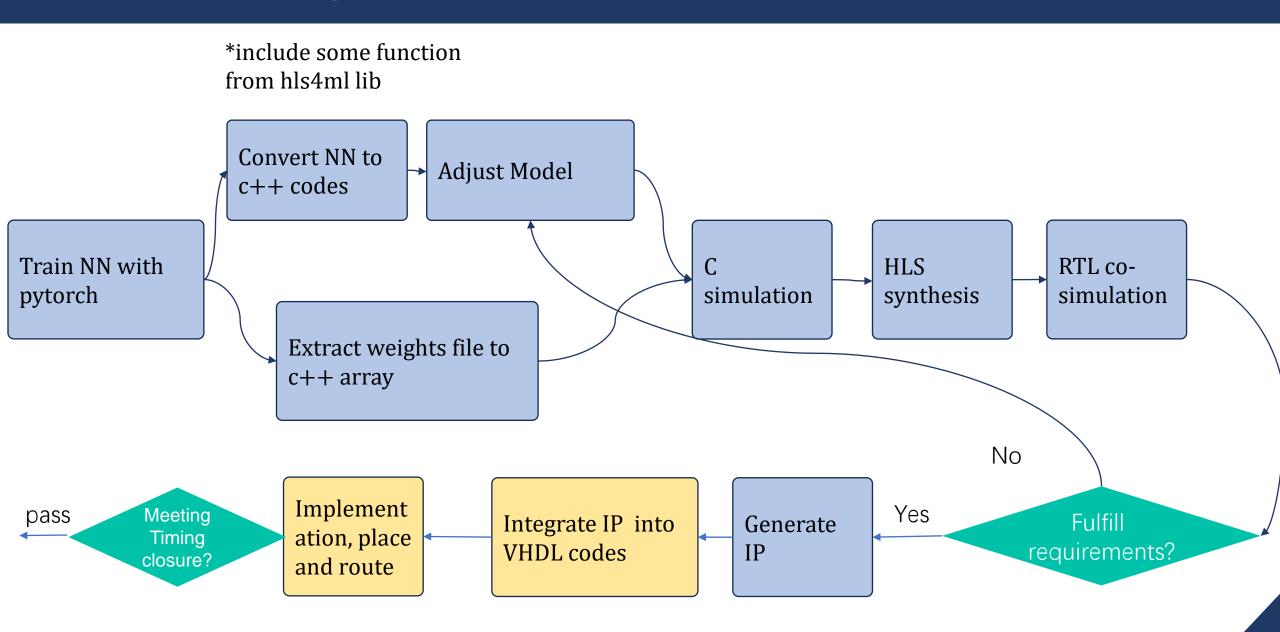
Summary

- The upgrade of Belle II first level track trigger is on-going
- We examined the performance for upgrade trigger with both software and RTL simulation, and achieved a 2.2 times background rejection rate improvement.
- We successfully implemented the DNN track trigger with UT4 module and fulfill the requirements with latency ~ 600ns and II ~ 4 clock.
- We are working on the commission work for the DNN track trigger

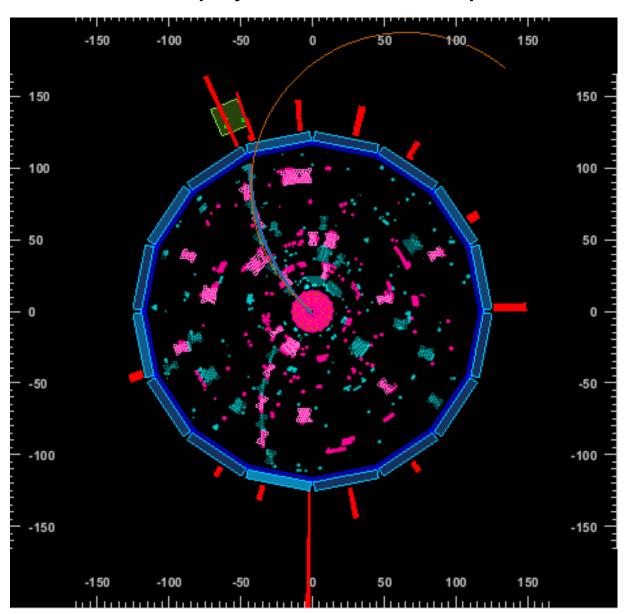
Next Step

3D Hough transformation and GNN

Workflow with HLS

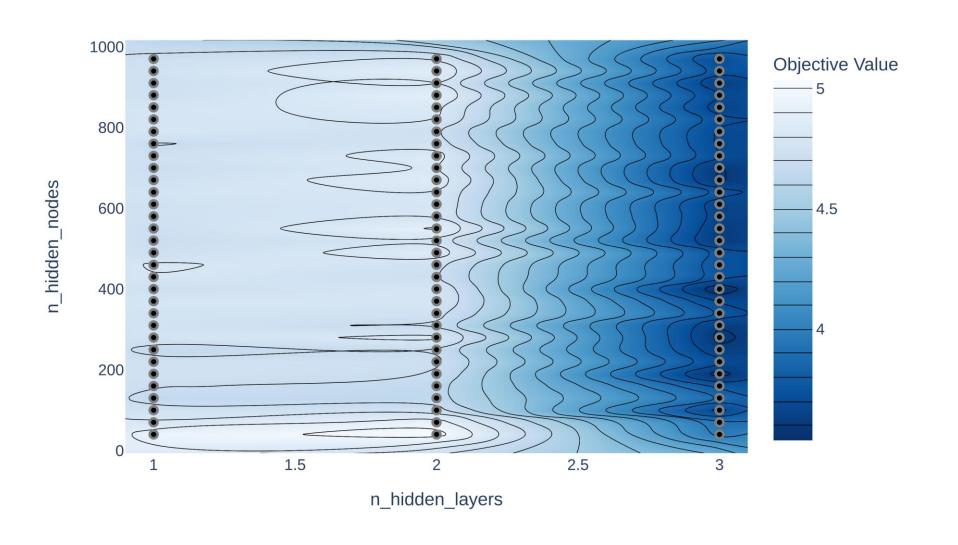


General physics events shape



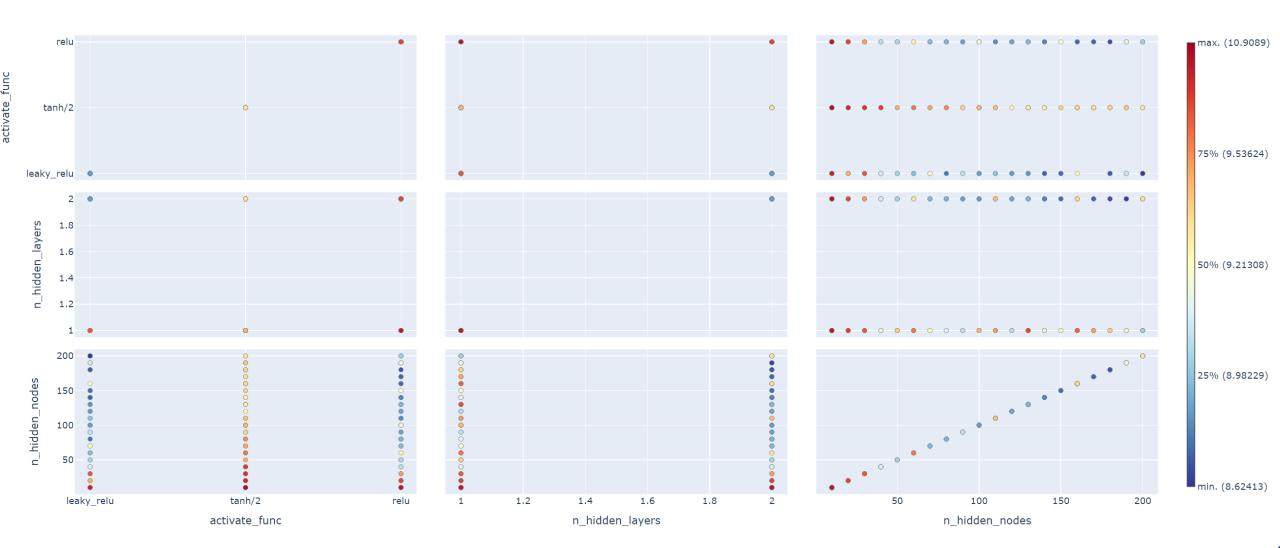
Depth is much more powerful than width

Contour Plot

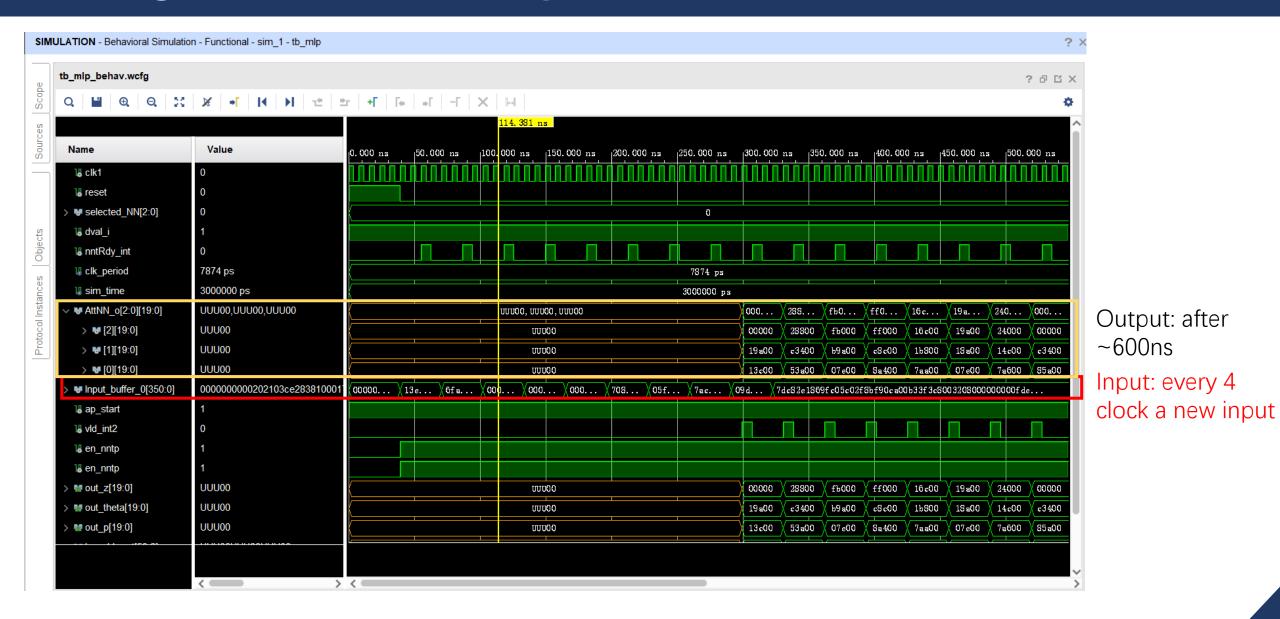


Optimization for Self-attention MLP

Rank (Objective Value)



Core Logic vivado simulation pass



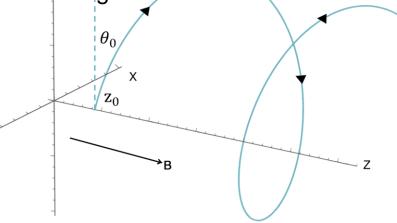
Introduction CDC trigger - 3D reconstruction

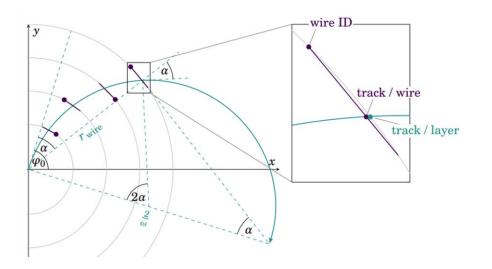
Only θ_0 and z_0 remain unknown for 3D tracks.

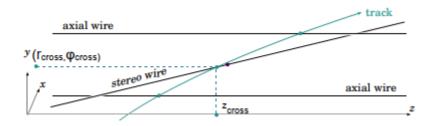
With Crossing angle ϕ_{cross} for stereo wire we can get z_{cross} .

Using two or more z_{cross} with μ we can fit the linear track in μ – z plane and obtain θ_0 and z_0 .

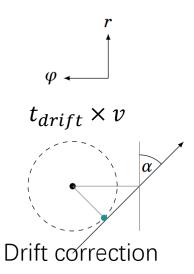
Y Using drift time to correct the drift distance.







$$\begin{pmatrix} x(\mu) \\ y(\mu) \\ z(\mu) \end{pmatrix} = \begin{pmatrix} r \cdot (\sin(\mu/r - \phi_0) + \sin\phi_0 + x_0) \\ r \cdot (\cos(\mu/r - \phi_0) - \cos\phi_0 + y_0) \\ \cot\theta_0 \cdot \mu + z_0 \end{pmatrix}$$



Requirement for new developed NN

Parameters	Target
z_0 resolution at IP (σ_{95}^{IP})	<2 cm
Trigger efficiency	>95%
Extra background rejection rate	>50%

- Reduce the z_0 resolution for signal track to less 2 cm
- Keep same efficiency as before (>95%) and restrict cut to reject further half of background events, which were kept by current trigger.

	CDC $B\overline{B}$ bits	CDC $ au$ & dark bits
Current CDC Background raw trigger rate	2.15 kHz	1.91 kHz
Required CDC Background raw trigger rate	1.07 kHz	0.9 kHz

 New NN algorithm can be implemented on new universal trigger board (called UT4), which has about 4 times more logic gates than previous one.

Performance evaluation – Training, validation and testing sample

Data sample generate from special physics run data taken without HLT trigger.

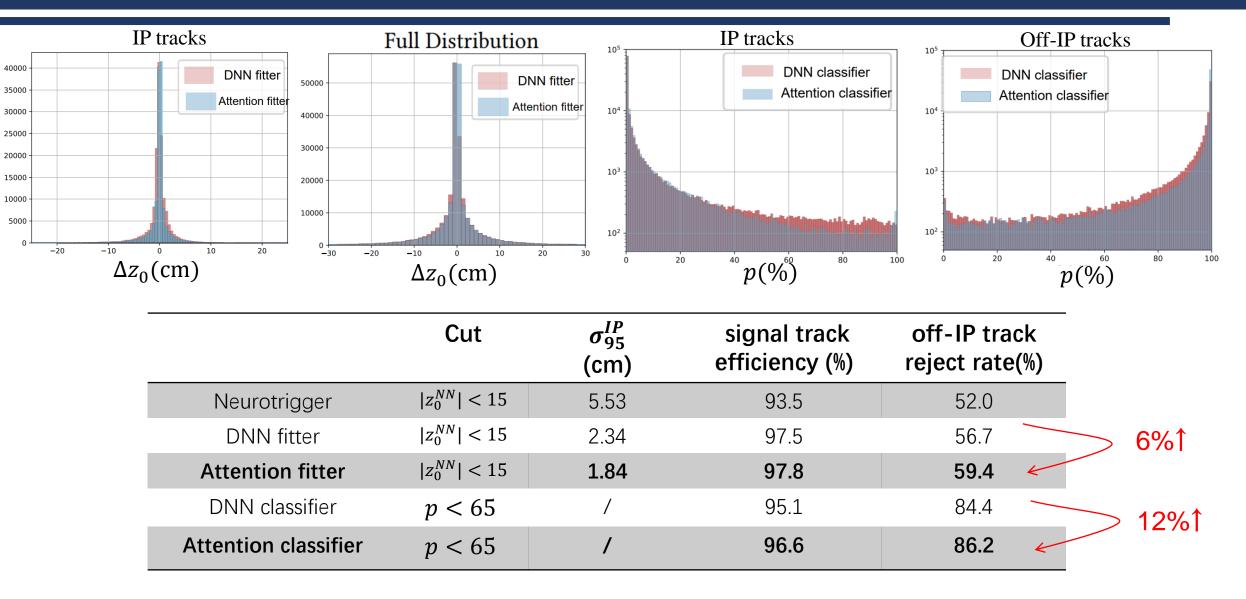
Target z_0 and θ_0 of Tracks are got from offline reconstruction and fed for training

Randomly separate full sample in training validation and test:

	#Signal Tracks	# Off-IP Tracks	#Fake Tracks
Training sample	935K	284K	0
Validation sample	282K	85K	0
Test sample	180k	53k	87k

Fake tracks are only included in test sample -- No target z_0 and θ_0

Performance evaluation – Attention based NN



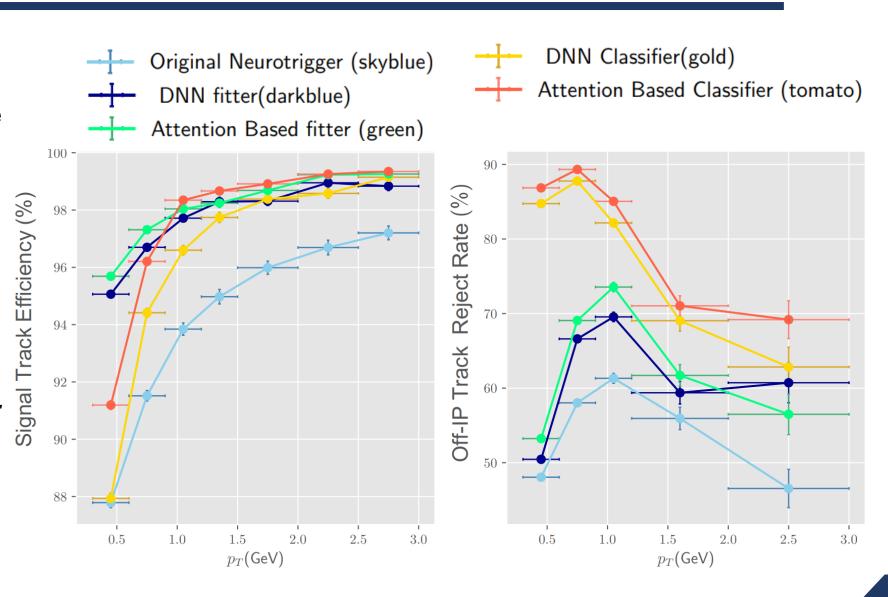
Attention NN gain 0.5 cm IP resolution and ~12% reject rate improvement comparing with DNN

Performance evaluation – Transverse momentum dependency

Check the efficiency and reject rate dependency of Transverse momentum (p_T)

Cut:
$$p < 65 \text{ OR } |z_0^{NN}| < 15$$

- All new model have better efficiency & reject rate at any p_T
- Classifiers improve low p_T reject rate by 30%, while have lower efficiency comparing with fitters



Performance evaluation – Fake track

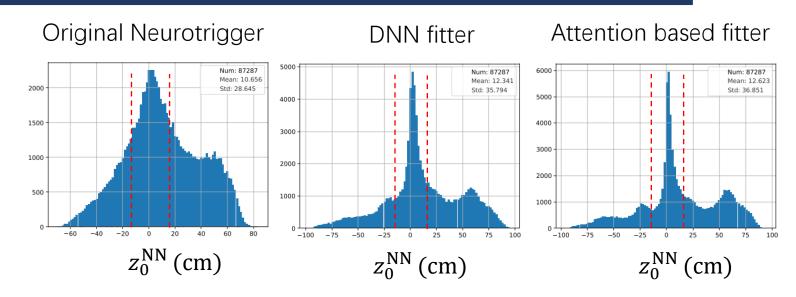
Classifiers can identify fake track well which mainly concentrate at $p\sim 100$

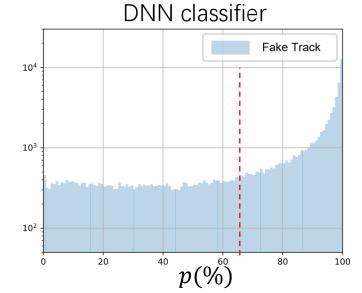
For **Fitters**, Fake track have a certain z_0^{NN} distribution **centering at** ~ 0 .

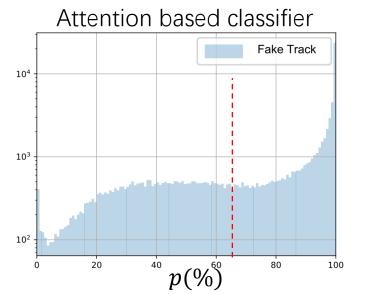
With Cut: $p < 65 \text{ OR } |z_0^{NN}| < 15$

Fake tracks reject rate

Original Neurotrigger	60.4%
DNN fitter	58.5%
Attention based fitter	59.8%
DNN classifier	68.5%
Attention based classifier	66.5%

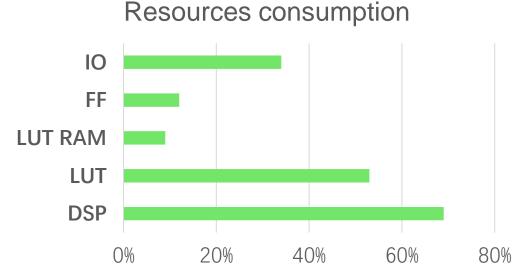






Floor planning and Implementation result





- Floor planning the dense layers :
- Resource matched requirements, not timing violation
- Latency: 76 clock = 592.8 ns ;require: < 600ns
 - Initial Interval = 4 clocks ;require: 4 clocks