

MDC Track Reconstruction for the Pre-Research of STCF L1 Trigger

Yidi Hao, Changqing Feng, Wenhao Dong, Zhujun Fang, Zixuan Zhou On behalf of STCF Trigger Working Group 18/05/2024

> Workshop of Tracking in Particle Physics Experiments Zhengzhou 2024

Outline

1. STCF trigger system preliminary design

- 2. MDC track reconstruction algorithm
 - 2D tracking and reconstruction
 - Time reconstruction
 - 3D reconstruction
- 3. Summary

STCF overview

Super Tau-Charm Facility:

- > A new generation of high-luminosity electron-positron collider
- Center-of-mass energy: 2-7 GeV
- Peak luminosity: >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Collision data: more than 1 ab⁻¹/y
- With potential to further increase luminosity and beam polarization

Requirements for trigger system

Requirements for trigger system in STCF

- **High luminosity in STCF synchronous generates:**
- High physics event rate: over 400 kHz
- Large data size: over 200 GB/s raw data
- **High background:** ~ **400 kHz/channel** in MDC

~ 1 MHz/channel in ECAL

Trigger system:

- Identifying physics events from massive background
- Reducing the pressure in data acquisition and transmission
- Maintain the long-term stable operation of experiment

STCF trigger system preliminary design

Two-stage trigger system:

Level 1 Trigger:

- Identifying physics events window
- Based on FPGA platform
- Latency ~ 5 μ s

High Level Trigger (HLT):

- Suppressing backgrounds in each time window
- Based on server cluster

Preliminary design of L1-level trigger

- **ITK:** high background
- ✓ **MDC:** key tracking detector
- **RICH:** complex Cherenkov ring reconstruction
- **DTOF:** auxiliary in Endcap
- ✓ ECAL: key calorimeter, fast response
- **MUON:** auxiliary for $\mu/\pi/n/K_L$

Workshop of Tracking in Particle Physics Experiments

MDC sub-trigger

Data flow of MDC sub-trigger:

2D tracking and reconstruction: transverse momentum, azimuthal angle
 Time reconstruction: track time --- events piling up (18% in 500ns)
 2D reconstruction = vertex (noder engle momentum)

3D reconstruction: z-vertex (polar angle, momentum)

MDC sub-trigger

Data flow of MDC sub-trigger:

• 2D tracking and reconstruction: transverse momentum, azimuthal angle Time reconstruction: track time --- events piling up (18% in 500ns)

3D reconstruction: z-vertex (polar angle, momentum)

2024/5/18

...

...

Outline

1. STCF trigger system preliminary design

2. MDC track reconstruction algorithm

- 2D tracking and reconstruction
- Time reconstruction
- 3D reconstruction
- 3. Summary

STCF MDC design

Baseline design:

- 48 layers of small cell
- 1,4,7,8---axial superlayers •
 - 2,3,5,6---stereo superlayers

Region division:

- Barrel: 33.4 deg 90 deg
- Endcap: 20 deg 33.4 deg

D Pattern matching:

- Generate pattern banks through simulated data Write into distributed storage units on the FPGA
- Match event data with the pattens
 Implement high-speed parallel processing with FPGA logic

Three stages:

- **Track segment (TS) finding:** reduce the input, reject background hits
- Track finding: pattern matching---fast but sketchy
- Estimation of track parameters: matching with an accurate pattern bank

Track segment finding:

- Undivided TS: for track finding
- **Divided TS:** for parameter estimation

D Pattern matching

- Track finding: merged patterns for fast tracking total number: **784**
- Track reconstruction: accurate patterns
 - total number: ~7800
 - $p_T > 170 \text{ MeV}$

Track efficiency

- Single clear track
 - Track finding: $p_T > 130 MeV \quad \theta > 30^\circ$
 - Parameter estimation: $p_T > 170 \text{MeV}$ $\theta > 30^\circ$ $\Delta p_T / p_T^2 \sim 0.1$
- Physics event
 - The cut of θ : reason for 90% lost events

Track efficiency

- Single clear track
 - Track finding: $p_T > 130 MeV \quad \theta > 30^\circ$
 - Parameter estimation: $p_T > 170 \text{MeV}$ $\theta > 30^\circ$ $\Delta p_T / p_T^2 \sim 0.1$
- Physics event
 - The cut of θ : reason for 90% lost events

混有噪声情况下 $J/\Psi \rightarrow Anything$ 事例中寻迹模块性能.

闪流久粉	目迹故家	事例平均	寻迹成功≥1	寻迹成功≥2
工业示奴	可应双举	坏径迹数	事例比例	事例比例
1	98.4%	0.07	98.4%	-
2	98.1%	0.05	100%	96.2%
3	96.6%	0.12	100%	99.7%
4	95.8%	0.13	100%	100%
5	94.3%	0.22	100%	100%
>5	92.6%	0.23	100%	100%

混有噪声情况下 $J/\Psi \rightarrow Anything$ 事例横动量重建模块性能.

闪迹发粉	舌冲动变	事例平均	重建成功径迹≥1	重建成功径迹≥2
工也示奴	里廷双平	坏径迹数	事例比例	事例比例
1	93.1%	0.15	93.1%	-
2	92.6%	0.13	98.7%	86.5%
3	89.6%	0.24	99.9%	95.5%
4	87.9%	0.26	99.9%	98.9%
5	86.5%	0.33	100%	99.8%
>5	84.5%	0.35	100%	100%

Workshop of Tracking in Particle Physics Experiments

Time reconstruction

□ 利用径迹参数重建击中时间

- 将径迹段近似为直线
- 利用径迹重建得到的参数计算漂移距离,从而得到漂移时间
 - FPGA流水线计算
- 结合电子学Timestamp时间计算径迹段产生时间
- 径迹时间为各径迹段时间的平均值

□ Time calculation

Check with another hit

• Abandon 5% TSs

Workshop of Tracking in Particle Physics Experiments

Time reconstruction

Track time reconstruction

- Calculate the median
- Abandon TS whose time deviates significantly from the median
- Test with single tracks
 - For tracks with $p_T > 180$ MeV: efficiency > 80%, $\Delta t < 8$ ns

横动量区间 (MeV)	5% 筛选阈值 (ns)	1% 筛选阈值 (ns)
160-180	66.3	121.0
180-240	15.7	42.1
240-320	17.2	39.2
320-460	15.0	25.2
460-640	14.9	24.8
640-840	12.3	19.8
840-1200	12.6	19.9
1200-1500	12.2	18.7

Z-vertex reconstruction

Stereo TS finding

• 1 superlayer ---2 seed wires

Position + timestamp

Track finding

- Matching stereo TS with an existing track
- Sectorization and Normalization

seed wire

adjacent wires

Z-vertex reconstruction

MLP training

- Multi-layer fully connected neural network
 (MLP)
- Input: track segment numbers and timestamps for 8 superlayers
- Output: z-vertex in various p_t regions

Quantization & FPGA resource optimization

• Qkeras

Model bitwidth and resolution of z-vertex

bitwidth*	8_1	12_4	16_6	20_8
Δz /cm	2.93	2.84	2.53	2.51
*W I represents 'an fimed/W/I' indicating				

²24-48-32-16-8-1.

*W_I represents ' $ap_fixed\langle W, I \rangle$ ', indicating a W-bit fixed-point number with I integer bits (including one sign bit).

• Pruning

Model size and resolution of z-vertex

Structure	Sparsity	NNZ Params	$\Delta z/cm$
	0	2.53k	2.43
A 1	0.2	2.04k	2.46
A	0.4	1.52k	2.56
	0.6	1.06k	2.90
	0.8	0.58k	5.05
\mathbf{B}^2	0.4	2.11k	2.31
¹ 24-32-32-1	6-8-1.	•	•

Workshop of Tracking in Particle Physics Experiments

Z-vertex reconstruction

Further resource optimization

- 1 MLP for all tracks
- Training with High Granularity Quantization (**HGQ**)
 - Latency: 60 clk
 - Interval (Dead time): 2 clk
 - FPGA resource:

DSP: 97% FF: 64%

LUT: 44%

- Latency: 37 clk
- Interval (Dead time): 1 clk
- FPGA resource:

DSP: 3%

FF: 5%

LUT: 13%

Able to be implemented in an XCKU060

Outline

1. STCF trigger system preliminary design

2. MDC track reconstruction algorithm

- 2D tracking and reconstruction
- Time reconstruction
- 3D reconstruction

3. Summary

Summary

- 1. 2D tracking and reconstruction (J/ ψ -> anything)
 - Track efficiency > 96% $\Delta p_T / p_T^2 \sim 15\%$ Latency = 339 ns
- 2. Time reconstruction (single track)
 - Efficiency ~ 80% $\Delta t < 16 \text{ ns}$ Latency = 207 ns
- 3. Z-vertex reconstruction (clear single track)
 - Δz ~ 3 cm

Latency (MLP) = 111 ns

- $\ensuremath{\square}$ Un-identification of high-p_T track in Endcap
 - 3 hits tracking as a complement to 4 hits tracking
 - Further optimization is needed
- □ Short track tagging
 - Un-reconstructed short track will be sent to GTL with related TS information
- **D** Distinguish of cross tracks

Thanks