Crystal/glass calorimeter option (electromagnetic sector): input materials

Yong Liu (IHEP)

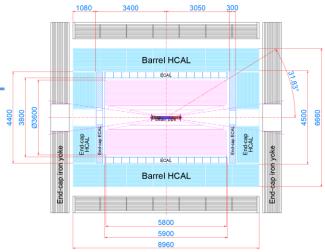
Mar. 9, 2024

CEPC Calorimeter Weekly Meeting

Performance: long-crystal design

ltems	Priority	Results / Status	Remarks
Boson Mass Resolution	А	TBD (ongoing studies)	Required BMR < 4%
Intrinsic EM energy resolution	A	$1.5 - 2\%/\sqrt{E(GeV)}$	Geant4 full simulation + digitisation
Separation power		Results for γ/γ and γ/π ; no results for π/π	gamma/gamma, gamma/hadron, hadron/hadron
Lepton ID in jets		No results	
Timing capability		~1.3ns (MIP); 0.34ns (shower maximum)	DESY Beamtest results for long BGO bars (40/60 cm)
π^0 reconstruction		No results	
Pile-up at Z-pole		No results	

• Priority/importance for performance requirements: (A) must-have; (B) plus; (C) not essential


Performance: short-crystal design

Items	Priority	Results / Status Remarks	
Boson Mass Resolution	А	3.6-3.7 %	1cm ³ BGO cubes for Higgs to gluon jets
Intrinsic EM energy resolution	A	$1.5 - 2\% / \sqrt{E(GeV)}$ Geant4 full simulation + digitis	
Separation power		Results for γ/γ and γ/π ; no results for π/π	gamma/gamma, gamma/hadron, hadron/hadron
Lepton ID in jets		No results	
Timing capability		TBD (ongoing studies)	1cm ³ glass cube: 14 ps (MIP), 5-7 ps (shower maximum)**
π^0 reconstruction		Simulation results	1cm ³ BGO cubes
Pile-up at Z-pole		No results	

* Glass is a promising option in the form factor of cubes/short bars, in terms of technical feasibility and cost effectiveness
** Based on a reference on 2016 CERN beamtest results (Crystal Clear Collaboration)

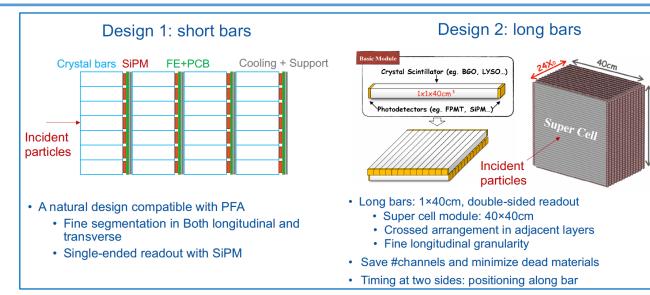
Cost table template for ECAL				
Parameter Name	Barrel	Endcaps (x2)	Sum	
Inner Radius for ECAL	1900 mm	400 mm	NA	
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24<i>X</i>₀ (2168.3mm for BGO)</mark>	NA	*
Longitudinal Depth	$24X_0$ (20	NA	e	
Modularity	28 modules in phi, 15 rings along Z	No concrete design (ideal cylinder for now)	NA	
Material Volume (m ³)	19.1	6.3	25.4	
Readout channels	0.95 M	0.32	1.27	
Power dissipation (kW)			25.4	
Cost: sensitive materials			76.2 M	
Cost: FE+BE electronics			3.2 M	

Mechanics Design by Quan Ji (Mar. 1, 2024)

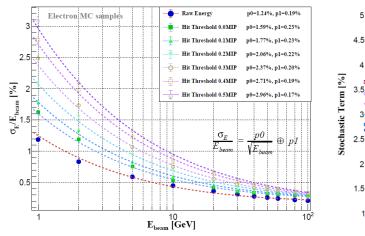
Note: ECAL endcaps will ncompass barrel

(Preliminary) Key components and materials SiPM (3x3mm²): 9 EUR / pc Front-end ASIC: 1 EUR / ch FE+BE electronics: 2.5 EUR / ch Crystal/glass: ~3 EUR / cm³ (with a large uncertainty) Power: ~20 mW / ch

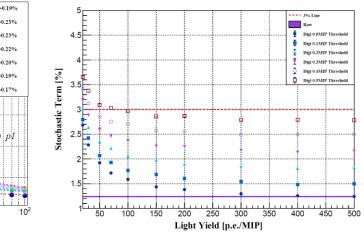
Cost


Technical status: simulation and R&D

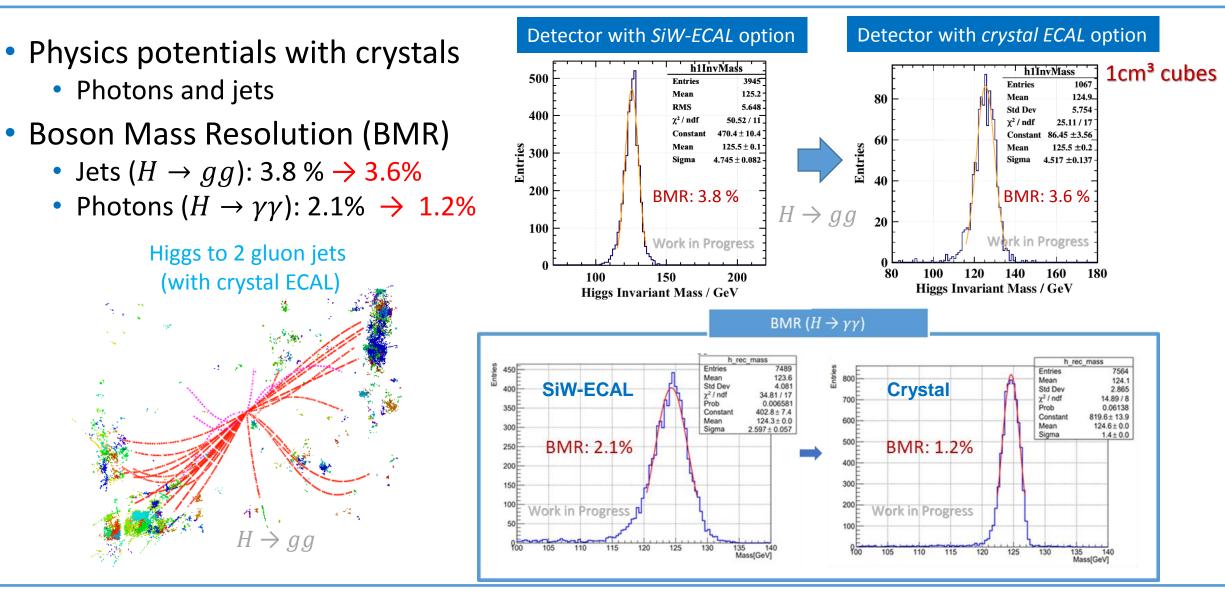
- Status and plans of simulation studies and R&D: details in the table below
- Person power: IHEP (Fangyi Guo, Yong Liu, Baohua Qi, Weizheng Song, Shengsen Sun, Yang Zhang), SIC-CAS (Junfeng Chen), SJTU/TDLI (Jiyuan Chen, Haijun Yang, Zhiyu Zhao)


Category	Status	Long crystal bars	Short crystal bars
Technical Readiness Level	Full Simulation (system level)	CEPCSW: barrel geometry; reconstruction (ongoing developments)	CEPCsoft: full geometry, Arbor
	Full Simulation (module level)Geant4 simulation, digitisation (module 40x40x28 cm³)		Geant4 simulation, digitisation (flexible module dimensions)
	Prototyping R&D (common)	High pixel density SiPMs (6/10 um pixel pitch), front-end electronics (ASICs), timing resolution	
	Prototyping R&D (modules, units)	Crystal module (12x12x24 cm ³); long crystal bars (40/60 cm)	No module developments; Short bars (2/4cm)

Extra Slides


Designs and EM resolution

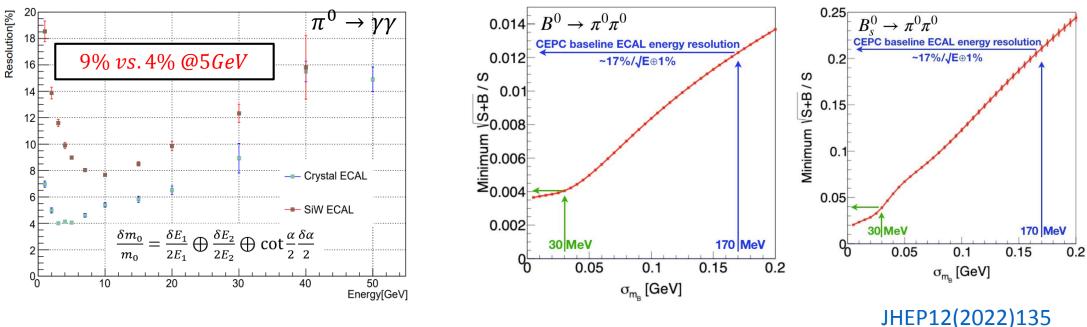
Geant4 full simulation + digitisation


Light Yield vs Stochastic Term

Key Parameters	Value
MIP light yield	~200 p.e./MIP
Dynamic range	$1 - 10^5$ p.e.
Energy threshold	~0.1 MIP
Timing resolution	1ns (→100 ps?)
Response non-uniformity	<1%
Temperature stability	Stable at ${\sim}0.05~^{\circ}{\rm C}$
Gap tolerance	~100 μm

Higgs physics performance

Baohua Qi, Dan Yu (IHEP); Zhiyu Zhao (SJTU)

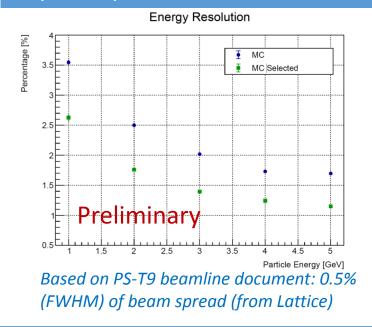


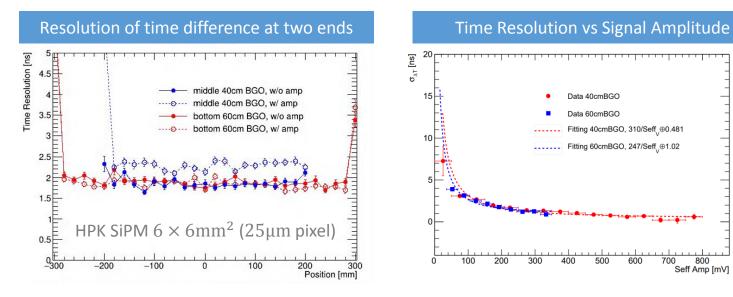
Flavor physics performance

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	~ 1.2%	~ 21%
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$




Mass Resolution of pi0

Crystal ECAL: prototyping and beamtests

Expected performance at CERN PS-T9

- Timing resolution (MIP level): ~1.8 ns (two ends) \rightarrow ~1.3ns (single end)
- Timing resolution (upstream crystals as pre-shower): ~0.34 ns (single end for large signals)