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EXO-200

 Double-sided with shared cathode
* One side shown
e -8 kV (-12 kV) on cathode in Phase | (ll)

* Single-phase LXe TPC
 Enriched to 80.6% in 136Xe
* ~175 kg in liquid phase
e ~90 kg fiducial mass

e Retired in December 2018
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EXO-200

* Each side detects both charge and light Anode
. o I ! |.- i N | 1
* 38x2 U-wire channels for charge collection ! applicd | HRAE !
* 800 e- noise per wire | el | | :
* 38x2 V-wire channels for charge induction | | | loniting
' : ' | U ee parficle
* Crossed at 60° with U-wires | . v-_,t?é*“‘ﬁ ,l l:
: | [ oerXer T
* 74x2 APD channels for light | N | :
 Each channel is a chain of 7 LAAPDs L | | :
g .
» Cathode is mostly transparent (mesh) - 7 |
e Cylindrical Teflon reflector scintillation ' ! !
Cathode
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EXO-200 data
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Example multiple-scatter y event in EXO-200:

lonization
signals
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EXO analysis in broad strokes: reconstruction

Signal extraction
(time, amplitude, rise time ...)

'Fit to WF template Clustering

Calibration

* Multiple algorithmic steps
* Done by different people over the course of several years - “grey” boxes
* Imperfections in each step can add systematics
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EXO analysis in broad strokes: point/interval estimation

»>  GOF

—{/ NLL H Minuit \F%/Best fit values

%IntervaI/Limits\

 MC based PDFs, binned extended NLL with systematics constraints
* Profile likelihood for interval construction
e Systematics due to recon and MC errors. Measured or estimated using calibration data
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Deep Neural Networks (DNN) in broad strokes

* DNN contains many tunable (trainable) parameters

* Training is done by minimizing discrepancy between truth and

network’s output
* E.g., RMS deviation between known and predicted energy

* Minimization is done, essentially, by gradient descent (like MIGRAD),
but with some new tricks to efficiently handle the multitude of

parameters
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Deep Neural Networks in EXO

* Can circumvent intermediate steps and extract high level information
directly from raw waveforms?
* YES
e Can validate results on real detector data, not just MC?
* YES

* Even then, if using MC truth during training, would be limited by how well
MC models data (as some standard analysis steps are). Can reduce reliance
on traditional MC?

* YES (Sometimes)

* JINST 13 P08023 (2018), Phys. Rev. Lett. 123 161802 (2019), JINST 18 P06005 (2023)
* Note: not covered in this talk are EXO-200 works that use non-DNN ML or use DNN with high-level info as input
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https://iopscience.iop.org/article/10.1088/1748-0221/13/08/P08023/pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.161802
https://iopscience.iop.org/article/10.1088/1748-0221/18/06/P06005

First application: charge energy reconstruction

* The main challenges of charge reconstruction are nontrivial noise and
disentangling U-wire signal into induction and collection

101 F

—— Collection
0.6 .
—— Induction

PSD [e-/V Hz]

Amplitude [a.u.]

0 200 400 600 800 1000
Time [us]

16° 161 162
Frequency [kHz]
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Normalized counts

First application: charge energy reconstruction
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First application: charge energy reconstruction

* Now full events — all 76 U-wire waveforms (1024 time samples)

* Minimal Preprocessing: correct channel gains + crop waveforms

Amplitude + offset [a.u.]

2000
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First application: charge energy reconstruction

* Input waveform image
e Convolutional part extracts features from image

* Dense part extracts target variable(s) from features

Feature maps

Input C1 Cc2 C3 Cc4 C5 Cé F1 F2 F3
1024x76 16@256x38 32@64x19 64@32x10 128@16x5 256@8x3 256@4x2 32 8 1
- Qﬁ T
e T ¥
Conv. (5x3) Conv. (5x3) Conv. (3x3) Conv. (3x3) Conv. (3x3) Conv. (3x3) Full Full Full
Subs. (4x2) Subs. (4x2) Subs. (2x2) Subs. (2x2) Subs. (2x2) Subs. (2x2) Connection Connection Connection
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Charge reconstruction training details

* Training data:

. — Training set
 Simulated events

|—I
o
I

R o —— Validation set |

* Gamma ray source S |

* Detector response uniform in energy . I S T A S

* Training: s
e 720 000 training events 2

e 100 epochs

e Technical details:
 Adam optimizer
* Minimize mean square error
L2 regularization
RelLU activation
Uniform Glorot initialization

Training time [epoch]
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First application: charge energy reconstruction

e Reconstruction works on MC over the

energy range under study

* Resolution (o) at the 2%8T| full absorption

peak (2615 keV):
* DNN: 1.21% (SS: 0.73%)
* EXO Recon: 1.35% (SS: 0.93%)

* Network outperforms in disentangling

mixed induction and collection signals

 See valley before 2%8T| peak, right in Ov[33 ROI!
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First application: charge energy reconstruction

* Applied to data and anti-corrleated with
scintillation, the DNN based , rotated”
resolution outperforms EXO by 2-6%,
depending on the week

* The better performance of the DNN alerted
that something was lacking in the
traditional approach and triggered
improvements in EXO-recon
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* While the cause is now largely understood
(handling of mixed induction and collection
signals), the developed traditional solution «®

in EXO-recon is still outperformed by the
DNN
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First application: Pitfalls of DNNs

1071

* Potential danger of DNN is that they learn to

reproduce the training data well but perform 2072 b
=N
poorly on real data. 3
D
* Validation on real data is critical £ o3k |
— True
 We saw this in EXO-200: — DNN (**Th training)

—— DNN (Uniform training)

* DNN over-trains on sharp MC training peaks and

shuffles independent validation events towards the

sharp peaks = resolution too good to be true

e Mitigated by using training events with uniform

energy distribution

1000 1500 2000 2500 3000
True Energy [keV]

(DNN (?**Th) - True) [keV]
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Second application: light position reconstruction

* Event position reconstruction from scintillation light
* Truth label provided by ionization information of real data
* Input are all 74 raw APD real data waveforms cropped to 350 ps

. . +z pllane . . 20oF . -z p!a:e. . . . .
T e T e Event position is encoded
o | e, | o SRS L in APD pattern The time dimension adds
B M A information on waveform
E M R NN NENNENENNNENENNNN] E Of esseeseseses *e e .
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Light reconstructio

l m 3 2
L=C+A-R where —EZZ(}f_;ﬂ 150 £

=1 k=1
* Training is done on real calibration data

with uniform distribution in space and
energy
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n details

* Waveform image is fed to CNN consisting of 4 convolutional and 3 fully connected layers
Output has three units corresponding to event x-, y-, z-coordinates
Loss function is Euclidean loss with L2 regularization
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Second application: light position reconstruction

* Loss function reaches 200 mm? after training the DNN for 200 epochs

* The corresponding resolution in 3D is 25 mm

 The model is tested on different types of source data at different locations

* No alternative light position reconstruction in standard analysis, so uncontested

Accuracy: 22.5mm (dx = 13.6mm, dy = 11.3mm, d. = 8.1mm) corresponding to R> = 0.99
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Second application: light position reconstruction

* Loss function reaches 200 mm? after training the DNN for 200 epochs

* The corresponding resolution in 3D is 25 mm

 The model is tested on different types of source data at different locations

* No alternative light position reconstruction in standard analysis, so uncontested
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Third application: Signal/Background Discrimination

* Binary (B3 vs Y) DNN based discriminator
as an additional variable to the
“traditional” ML fit

 DNN trained on waveforms re-generated
from EXO recon’d signals (not on raw
waveforms)

* DNN outperforms previously used BDT
discriminator

e Overall, a 25% sensitivity improvement,
compared to non-ML based analysis
* Phys. Rev. Lett. 123, 2019, 161802

e Kudos to grad. students who made this happen
(Tobias Ziegler&Mike Jewel most of all)

0.8

Signal Efficiency

O
N
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.161802

e Energy spectra: SS (left) and MS (bottom right)
e DNN spectra: SS/MS (top right) of projected for ROI events
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Third application: Signal/Background Discrimination

: = All Signal
* B3 events are more localized than y Lo — gl;ﬁagkgm;n;
E -Raw>0,
* DNN efficiency demonstrates : DNN-Raw<0.34

correlation with the true event size in
the MC

* Indicates that the DNN picks up correct
features of the waveform when |
reconstructing events 1074

Normalized counts

10_3§

* Data/MC agreement of the “DNN < 0
variable” validated with real calibration 5™
El DNN-Raw
data 50-> DNN-Recon
* Agreement not perfect, but comparableto go.2

other “shape” errors.

0 5 10 15 20 25
True event size (3D) [mm]
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Most recent: MC with GANSs

e EXO-200’s earlier attempts to develop a detailed photon-tracking MC did
not succeed

* Poor agreement with data, possibly due to imperfect knowledge of optical properties
or shortcuts in geometry implementation

* |t was also very resource-consuming to track photons

* A simple parametric simulation of the overall light yield per one array of APDs was
used instead, only for limited purposes

 We showed that one can train a GAN network directly with waveforms
from calibration data, bypassing the needs for detailed knowledge of
optical properties and detector geometry

* Importantly, we compared the output at all levels — from raw waveforms to signal
amplitude and its position dependency, to reconstructed energy spectra

* JINST 18 P06005 (2023)



https://iopscience.iop.org/article/10.1088/1748-0221/18/06/P06005

Most recent: MC with GANSs

e Generator starts from white noise and
label with requested position, energy Label Data

* Critic (discriminator) compares the
generated waveform to data sample

P Generator

* Wasserstein (BacepwTenH) distance,
aka Kantorovich distance, as a metric
for comparison (more stable than v

Standard GAN) s Discriminator +
* Constrainer: supervises training and l
ensures the generated waveform

conforms to the requested label Loss




Discriminator

74 74 \\ 74 74 4 74 74
350 350 350 350 350 350 350 350
5 16 32

p < X ®
128 1

25900+4

@ convolutional + LeakyReLU
f D fully connected + LeakyReLU

@ transpose convolution + LeakyReLU

Image 1 Tile 64 64 64 1
\74
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350
4
Concatenate
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1 3 3
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Generator
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loss

—— Woasserstein_fake + Wasserstein_real

—— gradient_penalty

e g, o iy

-10 1
2.786 2.788 | 2.790 2.792 2.794
leb
0.0 0.5 1.0 1.5 2.0 2.5
1le6

Iteration Step
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Most recent:
MC with GANs

e Raw waveform
comparison

* GAN generates
waveforms more
than an order of
magnitude faster
than the standard
EXO approach

 that does not even
include photon
tracking
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Most recent:
MC with GANSs

 Summed amplitude per APD

gang

* GAN reproduces the dead

channels
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Most recent: MC with GANSs

* Position dependence of light response reproduced

—— GAN —— GAN
—— Data —— Data
8000
8000
6000
6000
X X
c c
2 2
] ]
< 4000 <
4000
2000 2000
=200 -150 -100 =50 0 50 100 150 200 =200 -150 -100 =50 0 50 100 150 200
Z [cm] Z [cm]
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Most recent: MC with GANSs

* Anti-correlation between charge and light signals reproduced
e optimal angle is slightly different

* Light-only energy spectrum looks good but does not reproduce the resolution exactly

* Consistent with the extra uncertainty added by imperfect truth labels. Experiments that could train on
calibration data with more precise labels can do better

3500
—— 1=2626.6+2.9 keV, o/u=7.63+0.11%, x?/ndf=1.5 Data
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Towards next-generation LXe TPC experiments

* DNNs are being used to help guide design
* See, e.g., D.Bajpai’s talk at APS April Meeting

* Naturally, limited to MC so far, so not particularly interesting in
the context of this talk

* A couple of general notes:

e Should be careful with treating DNNs as Deus Ex Machina to
justify nonideal design choices (a la “who needs Frisch grids,
can overcome long induction tails with DNN magic”)

* If want waveforms as input, scaling up to DARWIN, nEXO may
be difficult

In EXO-200, 0.5M training events are 0.25 TB full (ROOT), but this gets
down to 25 GB when cropped and pre-selected (hdf5)

Long-baseline LAr TPC are bigger, so are dealing with this issue already
(sparse networks, reducing resolution of non-critical input, etc.)
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EXO-200, nEXO, DARWIN in approx.
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https://meetings.aps.org/Meeting/APR23/Session/B12.5

Summary

* EXO-200 has demonstrated the potential of deep neural networks for the data
analysis of a Ov experiment directly from raw data
* Improved energy resolution compared to standard approach
* Improved sensitivity to neutrinoless double beta decay
* Reconstructed position using scintillation light without using MC
e Data-driven MC of signal waveforms, faster than traditional approach
* Validated on real detector data

* DNNs are revolutionizing the way we do analysis

* While the field is somewhat overhyped currently, there is no doubt that once the dust settles
the CNNs will stay as a new stalole tool in physicist’s arsenal. Like the BDT was during the past
several decades. The jury is still out for GANs, GNNs and other advanced tools

* Can 50 from waveforms directly to the physics result? Still an open question. If ‘yes’, then
could reduce the need for the dedicated experiment-specific (or even field-specific) software
frameworks. The advantage is less overhead for doing physics
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Binary discriminator for B vs y events

Training data is identical to energy DNN

Amplitede + offeat [aiu]

Amalitede + offset [aw]
T

e 50% B signal, 50% y background

1000 1030 1100 1150 1200 1250 1300 1350 1200 10%0 11000 1150 1390 1350 1300 1350

MC event distributions uniform
in detector volume

e Topological discrimination only

¢ No assumption on spatial distributions
MC event distribution uniform in energy

¢ validation on 2vp data possible

DNN architecture inspired by
the Inception architecture

Shared weights in TPC braches
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e Blinded analysis performed
e S5/MS classification
e 3-dimension fit in both S5 and MS events:
Energy + DNN (topology) + Standoff distance (spatial)
» Make the most use of multi-parameters for background rejection
o 55, MS relative contributions constrained by SS fraction
+« Fit Phase-1 and Phase-2 separately
o [Improvement of ~25% in Ovpp half-life sensitivity
compared to using energy spectra + SS/MS alone

Energy

ZA _ ZA
o 5SS fraction o
< >
Energy
& > &
éﬁf SS a,,é‘éf MS
& &
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L= B [DW]- E DM+ E (VD@ ~1)] G.)

Wasserstein distance gradient penalty

where D is the discriminator, ¥ = ex + (1 — €)X, e € U(0, 1), 4 is the gradient penalty’s weighting
coefficient, and |||, denotes the Euclidean norm. The gradient penalty term, (||VD(£)[> — 1),
encourages the norm of the gradient to go towards 1. The point x used to calculate the gradient norm
is any point sampled between the GAN-generated distribution, Pg. and real data distribution, P,.. A
gradient penalty is a soft version of the Lipschitz constraint that removes the undesirable behaviour
of gradient explosion/vanishing when the weight clipping parameter is not carefully tuned in the
earlier Wassertein GAN design.
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First application: A note on the “Black box”

Data
— EXO
= EXO (no Ind)
— DNN
IndTag

* The better performance of the DNN 1oL
alerted that something was lacking in
the “traditional” approach and triggered
improvements in EXO recon

=
o
.

Probability

 While the cause is now largely
understood (handling of mixed
induction and collection signals), the
developed “traditional” solution is still 104l an
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Figure 28. Evaluation of the trained model on an independent set of test data. The events are selected to be
in a tight fiducial volume of 50 mm x 50 mm x 50 mm at position x = 100mm, y = Omm and z = 100 mm
and have energies above 2400 keV.
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