Stereo Crystal Ecal: Input Materials

Huaqiao Zhang (IHEP) For Stereo Crystal Ecal study team

Stereo Crystal Electromagnetic Calorimeter: Design

- To improve the 3D position resolution
 - Pointing angle of even layers alone Z: α
 - Pointing angle of odd layers alone Z: $\alpha' = -\alpha$
- Benchmark design:
 - α =20 degrees
 - R segmentation = 10
 - Crystal: (8-8.1)*10*284 mm³
 - Readout: SiPM or PD + electronics
 - Cooling pipe planted into the outside of the mechanical support
 - 24X0+10mm electronics+10mm support + 10 mm contingency = 300mm

Endcap design

Crystal: 8*10*284mm Horizontal layers has same point angle Pointing angle defined as angle w.r.t. beam in the horizontal plane: 20 degree

Performance

Items	Priority	Results / Status	Remarks
Boson Mass Resolution	A	H→di-photon: 0.3%(1.3%) with 2MeV(50MeV) thr. H→gg is under study	BMR < 4%
Intrinsic EM/hadronic energy resolution	А	Stochastic term: 0.9%(3.2%)/sqrt(E) with 2MeV(50MeV) thr.	CEPCSW fullsim
Separation power		5 GeV gamma/gamma, >80%@15mm 5 GeV gamma/10 GeVPi: coming	CEPCSW fullsim
Lepton ID in jets		preparing	Clear shape difference seen(backup)
Timing capability		Could have, accuracy depending on the sensitive material	No showstopper
π^0 reconstruction		Studying	soon
Pile-up at Z-pole		-	No showstopper

• Priority/importance for performance requirements: (A) must-have; (B) plus; (C) not essential

Active Elements:

Key Parameters:

Coverage: $1.5 < |\eta| < 3.0$

~215 tonnes per endcap

Power at end of HL-LHC:

~125 kW per endcap

3/15/24

Full system maintained at -30°C

~620m² Si sensors in ~26000 modules

~6M Si channels, 0.6 or 1.2cm² cell size

~370m² of scintillators in ~3700 boards

~240k scint. channels, 4-30cm² cell size

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 26 layers, 27.7 X₀ & ~1.5 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 21 layers, ~8.5 λ

Cost from CMS HGCal (kCHF)

• Electronics: 6M Si + 240k Sc

4.6.1	Front-end System (Silicon sensors)	5,778
4.6.2	Front-end System (Scintillator/SiPM sensors)	872
4.6.3	Front-end System (Common to Silicon and SiPM)	A 16A
4.6.4	Clock and Control	500
465	Power Distribution	<u>л</u> л л о
4.0.5		4,440
4.6	Electronics and Electrical Systems	15,762
4.7.1	DAQ	2,447
4.7.2	Trigger	3,779
4.7	Backend System (Trigger and DAQ)	6,226
4.8.1	DCS	257
4.8.2	DSS	341
4.8	Slow control	598

SiPM + Sc. (4-30 cm2 cell, 240k ch, 370 m2, X mm thick)

4.5	Scintillator/SiPM Modules	2,945
4.5.5	Scintillator/SiPM Module Production	14
4.5.4	Assembly Centre and Tooling	270
4.5.3	Wrapping (ESR film)	111
4.5.2	Plastic scintillator	832
4.5.1	SiPM - Photosensors	1,718

Si sensors: 620 m2

4.3 Silicon Sensors	21,513
---------------------	--------

item	Power	SiPM	Plasic Sc. Mat.	FE	BE+Slow C.	Si
numbers	40 mW/ch	7.2CHF/ch	0.22CHF/cm2	2.5CHF/ch	1.1CHF/ch	3.5CHF/cm2
remarks	Half? in e+e	3*3 mm2	No wrapping			

Cost

Cost table template for ECAL

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius for ECAL	1900 mm	400 mm	NA
Length for barrel; Outer radius for endcap	5900 mm 1900 mm + $24X_0$		NA
Longitudinal Depth	$24X_0$ (Thickness depends on each option)		NA
Modularity	#modules in phi, #rings along Z	Assuming ideal geometry if no design?	NA
Material Volume (m ³)	20.3	7.2	27.5
Readout channels	827180	317,248	1,144,428
Power dissipation (kW)	16.5kW	6.3kW	22.8kW
Cost: sensitive materials	579M RMB	205M RMB	784M RMB
Cost: electronics	74.4M RMB	28.6M RMB	103M RMB
			<mark>887 MRMB</mark>

SiPM + Electronics from HGCal

- SiPM: 7.2CHF/piece
- Electronics: 3.6CHF/ch

• Total~90RMB/ch

BGO:

• BGO: 4USD/cc (4000RMB/kg)

Power:

• 20mW/ch(Half of HGCal/ch)

Technical readiness level

- Status and plans of simulation studies and R&D (a table template)
- Person power: Xiao ZHAO, Chaochen Yuan, Han WANG, Liheng Huang, Lianyou Shan, Huaqiao ZHANG

Category	Status	Design 1	Other Alternative Design (if any)
	Full Simulation (system level)	V1 Implemented in CEPCSW	
Taskaisal	Full Simulation (module level)	V1 Implemented in CEPCSW	
Readiness Level	Prototyping R&D (common)	L3 Ecal, CEPC	C 4D crystal Ecal
	Prototyping R&D (modules, units)		No BGO module, GEO with Sc. In preparing

	桶部	单位 (毫米)						
	内部直径	3800	最大外部直	ī [:] 4400	l.	长度		5900
	晶体	BGO (24X0=26.880	<mark>cm) 市场参考价</mark>	<mark>ì格: ¥4000.</mark>	00/kg左右			
	大小	(8.0-8.1)*10*284	数量	827180=140)2*590	体积	20.3m3	
	重量	144.5吨	价格	5.779 1 Z				
	机械设计	纯圆桶						
	外径面支撑	/悬挂	内径面辅助)		沿5? 个sess	sion	
	竖直组装,	旋转90度后推入						
	端盖*2	单位 (毫米)						
	内部半径	400	外部直径	3800+2*24>	(0	厚度	24X0*2	
	晶体	BGO (24X0)	市场参考价	<mark>ì格: ¥4000.</mark>	00/kg左右			
	大小	8*10*284	数量	317248		体积	7.2 m3	
	重量	51.3吨	价格	2.0534 1 Z				
	机械设计							
	内径面支撑							
	电子学	1,144,428=827180+						
	前端板	1.6mm	母版	1.6mm		间隙	2mm	
	功耗	22.8kW(20mw/char	nnel) 电子学价格	3.6CHF/ch				
3/	SiPM	7.2CHF/ch	总价格	103MRMB				

Performance of Energy and 3D positioning resolution

5GeV gamma, phi: 10~350°, theta: 90°

- Z resolution ~ 0.84 mm; Phi resolution ~ 1.9 mm
- R resolution ~ 7.6 mm; Energy resolution as function of energy

- Sample: ZH->2neutrinos + γγ at 240 GeV
- Energy, position reconstruction and separation using simplified reconstruction method described above
- Crystal energy threshold: 2 MeV/50MeV

Separation between two 5 GeV photons

- Two 5 GeV photons, vary distance along phi between them
- Success reconstruction: 2 neutral particles, 3.3GeV<Eγ<6.6GeV for each photon
- Separation and energy regression using end-to-end NN
 - trained with flat distributed photon energy and distances

https://journals.aps.org/prd/pdf /10.1103/PhysRevD.108.052002

,32³³³³⁴⁰4³⁵⁰

Separation between γ/π

- 5 GeV γ /10GeV π , vary distance along phi between them
- Success reconstruction: 3.3GeV<E_v<6.6GeV
- Different π/γ separation power: pointing angle / magnetic field

Separation using NN will come soon

Threshold: 2MeV

$PiO \rightarrow 2phton invariant mass$

• End-to-end NN regression is on going, coming soon

Event display of shower separation/ID

Two 5 GeV photon, 165 mm distance

5 GeV photon and 10 GeV pi-, 66mm

5 GeV photon and 10 GeV pi-, 195mm

