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Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package

Introduction to the program, installation, setup, running, macros and document

Tutorial

Week 2 Fits and the regression

Basic assignment: Fit of functions to data: parameter determination and 

the goodness of the fit

Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 3 Monte Carlo random variates; Monte Carlo experiments

Basic assignment: Random number generation with root, statistical features, 

confidence intervals

Advanced assignment: A Monte Carlo based, statistical experiment to 

determine  the significance of an observation
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A change has been made



Project Schedule
Applied Computational & Numerical Methods

Week 4 Numerical methods

Partial differential equations

Week 5 Neural network method

Basic assignment: Backprop training on data, test of training results, 

optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Week 6 Project presentations
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����  Upper limits:    
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����  Lower limits are set similarly: 
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����  Error for non-Gaussian distributions: 

 

 In the data analysis the PDF distributions are not always 

Gaussian shape, and in many cases the PDF are not even 

symmetric about the mean. We recall that for a Gaussian PDF 

the 1 standard deviation regions ( , )x xσ< > − < >  and ( , )x x σ< > < > +  

each corresponds to half of the 68% confidence interval 

associated with the measurement result of x σ< > ± . To assign an 

error or errors with consistency, it is reasonable to derive the 

errors on the negative and positive ends separately, each with a 

confidence interval of 34% as well. Specifically, these errors are 

numerically calculated by requiring 
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These errors are normally asymmetric. The final result would then be H
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Examples:  

(1) A set of hypothetical situations where the observed numbers of events 

(Bm), all with an assumed error σ=1. Two possible 90% C. L. upper 

limits are set in the Table.  
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Bm Method I 

Use Physical Region Only 

Method II 

Use All Regions 

5 6.3 6.3 

4 5.3 5.3 

3 4.3 4.3 

2 3.3 3.3 

1 2.4 2.3 

0.5 2.0 1.8 

0 1.6 1.3 

-0.5 1.4 0.8 

-1 1.2 0.3 

-2 0.8 -0.7 

-3 0.6 -1.7 

-4 0.5 -2.7 

-5 0.5 -3.7 
 

Both methods agree for Bm>1.  

 

Clearly method II gives wrong limit for small or negative Bm values. 

Method I is always correct.• Error analysis 

Xinchou Lou 8



Error analysis 

June 20, 2011

Two types of errors 

 

There are basically two different types of errors associated with 

any measurement procedure. 

 

Systematic errors  

are biases in measurement which lead to measured values being 

systematically too high or too low, are more in the nature of 

mistakes. 

 

Statistical (random) errors 

 
are caused by random (and therefore inherently unpredictable) 

fluctuations in the measurement device, come simply from 

inability of any measuring device to give infinitely accurate 

answers. 
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Statistical errors

A general situation: a function 
1 2( , ,..., )

n
f f x x x=  will change when the underlying 

variables {xi} changes by a amount {δxi}: 
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Assuming errors are relative small, then  
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Statistical errors

If all variables are independent, i.e.,  
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Statistical errors

Special Cases: 
 

 N measurements of equal precision – 
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 Some forms of f – 
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Two measurements of the same physical quantity, T: 

 

T x

T y

x x

y y

σ

σ

=< > ±

=< > ±
 

 

are correlated via a covariance cov(x,y). 

 

In an effort to find the best estimate for T, a linear combination of xT and yT is 

formed 

 
  (a, b all positive real numbers, a+b=1)T T TA ax by= +  

 

Then a=1-b and the variance on A is  
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For this linear combination  
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Solving for a 
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and the best estimate for A is 
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( )( )( )
A

D M Dσ = �  

here 

2

2

,

cov( , )

cov( , )
T

T

T T

T T

x

y

A A
D

x y

and

x y
M

x y

σ

σ

 ∂ ∂
=  

∂ ∂ 

 
=   
 

 



Error analysis 

June 20, 2011

Assume y=x + 2x, variables (x) and (2x) correspond to 

an error matrix 

2 2 2
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The 1
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 derivative matrix 
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The variance on y is  
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 giving the error on y 

3y xσ σ=  

Xinchou Lou 15



Error analysis 

June 20, 2011

Example: 

 

The momentum of particle b in the reactions 

a A B b+ → +  
and 

*a A B b+ → +  
is determined as 
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where s is the curvature  of the trajectory (of length l) in the 

magnetic field H. 

 

If the main inaccuracy arises from s 
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Statistical errors

Error Matrix for Multi-variable Gaussian Distribution

A multi-variable Gaussian can be expressed via the error matrix

( )

1
2

1 2 1
2 2

1 1
( ,..., )

2 | |

XMX

n nF x x x e

Mπ

  
 
  

−
= ×

�

( )1 2
, ,..., nX x x x=�

where

and M is the error matrix
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 Use of Error Matrix  

 

(1) Extract EM from experimental data, find correlation and 

the size of the error so that a description of the underlying 

physics/nature can be made. 

 

(2) Given a set of variables with their associated error matrix, 

we can calculate the error on a function of these variables. 

 

(3)  Or we can transform to some new variables and calculate 

the new error matrix for these variables. 
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Systematic errors

Limit on precision due to instruments, procedure, calibration,  

the way results are extracted, and other limiting factors.  

 

Normally these errors are not directly a result of the statistical  

random fluctuations, and are quoted separately from the  

statistical errors. 
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Systematic errors Consider a ruler used in a length measurement: 

 

 • smallest division, or unit is 1mm=10
-3

 m, best possible reading 

is probably ~1/4 mm or of a unit. ⇒ a systematic error      

~ 30.25 10  I mδ −×∼ .   (Instrument) 

 

• If the ruler is not properly calibrated by the manufacturer. Say a 

1 m =10
3
 mm ruler is actually 10

3
+2 mm in length. Then 

additional error of  

 

3

2 

10  C

mm
L

mm
δ −= ×  

 

  where L is the length measured.  (Calibration) 

 

Even if 100 consecutive measurements are made, 
  (true length )

m t

i il l  
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1

1 N
m

i

i

l l
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< >= ∑   

 

When the ruler is calibrated incorrectly, 1000 mm is actually 

1002 mm in reading then 

1 1

1000 1 1
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N N
m t t t t t

i i i i i

i i

mm
l l l l l l l
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 
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where <l
t
> is the average of unbiased measurements. So 

regardless the number of measurements the systematic error 

persists!
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Systematic errors

•  If the engineer doing the measurement does the experiment 

reads the length from one side, then he might be off 

systematically by δW, positive or negative, but not both(±).  

(Way of doing the measurement) 

 

•  If it is an indirect observation/measurement, the light 

scattering/reflection/divergence cause edges to shift/expand, 

causing error δp. (Procedure-Way) 

 

• Other limiting factors, known or unknown. The example of 

LEP Z line shape measurement. (Other Limiting Factors) 

 Relentless effort to understand the measurements and dig 

out biases and limiting factors. (Get LEP WG paper) 

 

Finally, the total systematic error is a result of all these 

errors: 

 
.....Owsyst I PC

σ δ δ δ δ δ= ⊕ ⊕ ⊕ ⊕ ⊕  
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Systematic errors: LEP Energy Measurement
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Precision measurement of the Z boson mass

0
e e Z f f

+ − → →

Need to know extremely well the energy of the LEP beams (~90 GeV)
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Systematic errors: LEP Energy Measurement
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Systematic errors: LEP Energy Measurement
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Systematic errors: LEP Energy Measurement
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Periodic energy variation
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Systematic errors:  tidal effect due to the Moon

The Earth experiences two high tides 

per day. There is a high tide on the side 

nearest the Moon because the Moon 

pulls the water away from the Earth, 

and a high tide on the opposite side 

because the Moon pulls the Earth away 

from the water on the far side. 
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Systematic errors:  tidal effect due to the Moon
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Systematic errors:  tidal effect due to the Moon

The tidal influence on a close object is greater because the inverse square law

drop in gravitational force gives a greater ratio of the force on the near side of 

the object to that on the far side. As shown below, the tidal ratio of the force per 

unit mass on the near side compared to that on the far side is much larger for the 

closer object.

http://hyperphysics.phy-astr.gsu.edu
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Systematic errors:  tidal effect due to the Sun is 0.3% as large

http://hyperphysics.phy-astr.gsu.edu

Even though the Sun is 391 times as far away from the Earth as the Moon, its force 

on the Earth is about 175 times as large. Yet its tidal effect is smaller than that of 

the Moon because tides are caused by the difference in gravity field across the 

Earth. The Earth's diameter is such a small fraction of the Sun-Earth distance that 

the gravity field changes by only a factor of 1.00017 across the Earth. The actual 

force differential across the Earth is 0.00017 x 174.5 = 0.03 times the Moon's force, 

compared to 0.068 difference across the Earth for the Moon's force. The actual tidal 

influence then is then 44% of that of the Moon. 
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Systematic errors
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Systematic errors: 
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Systematic errors
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Systematic errors: 
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Systematic errors: 
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Systematic errors: 
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Systematic errors: 
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Systematic errors: 
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Systematic errors: 

M(Z)≅≅≅≅90,000 MeV
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• Chi-square Fit 

 
2 2exp

2
2 2

1 1

( ( , ))theoryn n
i i

i ii i

X X x pXχ
σ σ= =

−∆= =∑ ∑
�

 

 
exp  experimental data value, -th entryX i
i

 

 

( , )  theoretical value, -th entry

                           is the parameters ( ) of the fit/theory

 theoryX x p i
i

p k

�

�
 

 

i   standard error (theoretical value preferred), -th entryiσ  

 

Good fit:  not more, not less, than what the errors would allow
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For good match between data and theory in the fit ∆X is expected to be 

~σ, thus χ2
 is on the order of (n-k) for a good fit. Equivalently χ2

/(n

1. 

 

If χ2
/(n-k) >> 1, poor agreement between data and theory; bad fit. 

 

If χ2
/(n-k) << 1, too good agreement between data and theory.    

                          Possibly due to estimated errors. 

 

In both cases fit is to be rejected. 

 

Exact decision is based on the χ2 distribution with ν=n-k degrees of 

freedom.  
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• Chi-Square Distribution 

 

Defining the Gamma function 

 

( ) 1

0

z tz t e dt
∞

− −Γ = ∫  

 

and the incomplete Gamma function  

 

1

0

1
( , )

( )

x
a tP a x t e dt

a
− −=

Γ ∫  

 

The Chi-Square probability function is defined as  

 

( )
2

2 | ,
2 2

CS P
χνχ ν

 
 
 
 

=  

 

The meaning of CS is the probability that observed chisquare for a 

correct model should be less than a value χ0
2
.  
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Quantiles of the Chi-Square Distribution with v Degrees of Freedom 

 

  DOF ν      0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 

1 0.000 0.000 0.001 0.004 3.841 5.024 6.635 7.879 
2 0.010 0.020 0.051 0.103 5.991 7.378 9.210 10.597 
3 0.072 0.115 0.216 0.352 7.815 9.348 11.345 12.838 
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 
5 0.412 0.554 0.831 1.145 11.070 12.833 15.086 16.750 
6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 
11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34,267 
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.559 
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 
27 11.808 12.879 14.573 16.151 40.113 43.195 46.963 49.645 
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 
29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 
35 17.192 18.509 20.569 22.465 49.802 53.203 57.342 60.275 
40 20,707 22.164 24.433 26.509 55.758 59.342 63.691 66.766 
45 24.311 25.901 28.366 30.612 61.656 65.410 69.957 73.166 
50 27.991 29.707 32.357 34.764 67.505 71.420 76.154 79.490 
55 31.735 33.570 36.398 38.958 73.311 77.380 82,292 85.749 
60 35.534 37.485 40.482 43.188 79.082 83.298 88.379 91.952 
65 39.383 41.444 44.603 47.450 84.821 89.177 94.422 98.105 
70 43.275 45.442 48.758 51.739 90.531 95.023 100.425 104.215 
75 47.206 49.475 52.942 56.054 96.217 100.839 106.393 110.286 
80 51.172 53.540 57.153 60.391 101.879 106.629 112.329 116.321 
85 55.170 57.634 61.389 64.749 107.522 112.393 118.236 122.325 
90 59.196 61.754 65.647 69.126 113.145 118.136 124.116 128.299 
95 63.250 65.898 69.925 73.520 118.752 123.858 129.973 134.247 
100 67.328 70.065 74.222 77.929 124.342 129.561 135.807 140.169 
105 71.428 74.252 78.536 82.354 129.918 135.247 141.620 146.070 
110 75.550 78.458 82.867 86.792 135.480 140.917 147.414 151.948 
115 79.692 82.682 87.213 91.242 141.030 146.571 153.191 157.808 
120 83.852 86.923 91.573 95.705 146.567 152.211 158.950 163.648 
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• Purpose of a ChiSquare Fit 

 

(1) Determine parameters of a theory or model (function to be fitted).

 

(2) Hypothesis Testing:  

 

            ♦ Is the fit of the curve to the data good? 

            ♦ Does the curve describe the data? 

            ♦ Do the data and theory/model agree? 

 

Use of the ChiSquare distribution to test if the desired confidence 

level is reached.  

 

Accept the fit if 2( | ) ( ,1 )CS χ ν ε ε∈ −  where εεεε is a small 

number, typically has a value in the range 0.01-0.05. 

 

Reject the fit otherwise (need to make sure the fit is properly 

done). 
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Examples 
 

 Fit to obtain the best estimate (Xbe) for a variable (X) for which n 

independent measurements have been performed: 
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Minimizing the chisquare results in 
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This is exactly the equation shown previously. The error is also 

obtained earlier: 

 

2

2
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1beX n

i i

σ
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=
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The degree of freedom is (n-1). Compare this minimum χ2
 value to the 

CS table for the desired confidence level to decide if the fit is to be 

accepted. Xinchou Lou 45
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 Fit to a histogram with binned data, each of the bins contains a finite    

    entry of counts/evenets, Ni: 

 

The error on Ni is square-root of Ni. The ChiSquare variable becomes

 

 
2

2

1

( ( ) )f

n
i

i i
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N p N
χ

=

−
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�

 

 

where Nf is the curve with parameter p to be fitted. 
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The data are fitted to a sum of a signal function (Gaussian) and a 3
rd

order polynomial distribution 

 

0 0 1 2 3 0 0 1 2 3
( , , , , , , ) ( , ) ( , , , )

f
N h m p p p p h G m Pol p p p pσ σ= × +

 

Explicitly 

 

0
2( )

22 2 3

0 1 2 32

m m

f
h

e x x xN p p p pσ

πσ

−
−

+ + += +  

 

The process of minization of χ2
 is carried out by the Minuit program 

linked to ROOT. 
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Chi2        =     36.5406 χ2=22.5 for 5%,  χ2=49.8 for 95% 

NDf        =     36 

p0               =     -7.07142        +/-     0.0233493 

p1               =     -0.0194368      +/-     0.0354128 

p2               =     2.03968         +/-     0.0136149 

p3               =     1.00594         +/-     0.0139068 

**************************************** 

Chi2             =     46.7362 

NDf             =     38 

p0               =     1.0005          +/-     0.0242765 

p1               =     0.985942        +/-     0.0279149 

 

**************************************** 

Chi2           =     43.6161 

NDf            =     38 

p0             =     -2.04095        +/-     0.022045 

p1             =     1.01171         +/-     0.00904363 
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Data points are fitted to a Gaussian distribution – 
 

 Height     = 111.8 ±±±± 5.9 

 Mean (Mass)       = 3095 ±±±±  2.0 

 Standard Deviation (Sigma) = 48.6 ±±±±  2.0 

 
Goodness of the fit – Accepted 

 

 Number of Degree of Freedom  = 19   

(number of data points/bins in the histogram) 

   Chi-square(χ2)= 18.42 

 

 Confidence level (NDF=19):   

χ2=10.12 for 5%,  χ2=30.14 for 95% 
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Project Assignment #2 

Basic Assignment 
Fit to Data of a Gaussian Signal Function plus a Polynomial Background 

 

Introduction 
Usually data under study contains the signal of interest as well as backgrounds. An experimenter makes 

every effort to reduce the backgrounds and retain the signal. The variable to use sometimes is the so-called 

signal-to-noise (SN) ratio, defined as the number of signal counts or area over the total background counts 

or area. By maximizing the SN ratio the signal can be most visible and thus can be well studied.  

 

After the background rejection process the experimenter needs to determine the position, significance and 

other properties of the signal, in the presence of the remaining backgrounds. He (she) can describe the 

backgrounds with a polynomial function  

 

2 3

0 1 2 3( , ) ...iBKG a x a a x a x a x= + ⋅ + ⋅ + ⋅ +  

 

where x is the variable (mass, energy, distance, etc.) along which the events are distributed, ai are the 

parameters of the polynomial function. The signal can be described by a Gaussian distribution 

 

( )
2

22( , , , )
2

x m
h

G h m x e σσ
πσ

−
−

=  
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where h, m and σ are the height,  mean and the standard deviation of the Gaussian function. The number of 

signal events, Nsignal,  can be evaluated via 

 

2.52×σ

bin-sizesignalN h= ×  

 

where bin-size=2 MeV, σ and h are to be determined from the fit directly. The sum of the two functions 

form the fit function 

 

( , , , , ) ( , , , , ) ( , )fit i iFUN a h m x G x h m x BKG a xσ σ= +  

 

A χ2 
minimization fit of this function to the data will be performed, and the fit parameters will be extracted 

in the fit process. The goodness of the fit can be evaluated based the χ2
 value and the total degree of 

freedom. 

 

In many cases a single Gaussian signal function is not adequate to describe the signal peak present in the 

data. A second Gaussian function is added to FUNfit to better describe the data, and the fit is repeated.  
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Description of the Project Macro 

The macro contains the C++ code for a χ2 minimization fit. The root file project2-1.root contains the 

histogram of data to be fitted. The fit returns values and errors for  

 

(1) Height of the Gaussian function h (p0), 

(2) mean (m) of the Gaussian function (p1), 

(3) resolution or standard deviation (s) of the Gaussian function (p2), 

(4) parameters of the polynomial function for background (ai=pi+3), 

along with the χ2
 value and the degree of freedom, the error matrix for h, m, σ. 
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Proceedure 
(1) launch the root program. 

(2) run this project by entering ‘.x project2.C’. 

(3) look for fit results, take note of the outputs. Write down the values, errors and step sizes. 

(4) extract the correlational matrix for the 3 parameters (h, m and σ) 

 

 

_ _  _  

_  _  _  

_  _  _  

hh hm h

mh mm m

h m

A A A

A A A A

A A A

σ

σ

σ σ σσ

 
  
  = =   
     
 

 

 

 

(5) write down the χ2 
value and the degree of freedom of the fit 

(6) print out the fit-data graph with fit statistics  

(7) include a second Gaussian in FUNfit and repeat (2)-(6) 

(8) determine the number of signal events and the errors. 
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Questions (required) 
(1) Do you think this is a good fit? 

(2) Are the step sizes much smaller than the error for all the parameters? 

(3) Are the three (six) Gaussian parameters highly correlated? 

(4) Given the fit results and the error matrix how do you extract errors on the height, the mean and the 

standard deviation for the Gaussian signal? 
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Advanced Assignment 

 

Extraction of a B meson lifetime from the proper time distribution 

 

Introduction 

 

The lifetime of heavy flavored hadrons are determined by the precision measurement of the production 

vertex and the decay vertex of such hadrons in the experiments.  

 

L3d = (P/pxy)×Lxy 

 

where Lxy is the distance between the production vertex and the decay vertex of the hadron on the XY-

plane, pxy the linear momentum on the xy plane, and p the linear momentum of the hadron. The proper time 

of the decay, which is the lab time boosted to the rest frame of the hadron, is 

 

tp=L3d/(βγc) 

 

The measured tp value is smeared by the resolution of the proper time measurement, σt, due to the 
limitations of the detector and the calibration. 

 

The lifetime of a heavy flavored hadron can be obtained from a fit to the tp distribution. 
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The data 

 

The root ntuple file project2-2.root contains three simulated proper time distributions of the same B hadron. 

The data are contained in the binned histograms hr2, hr3, hr4 respectively, each with different resolution σt, 

and the offset t0. 
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The project 

 

Fit hr2, hr3 hr4, respectively, with the following probability density function (PDF): 

 

 PDF ∝  G(tp-t0, σt)⊗[(1/τ)e
-tp/τ

] 

 

where G is the Gaussian PDF with a mean of tp, t0 the offset due to the calibration , σt, is the standard error 

of tp, τ is the lifetime of a B hadron on the order of ~1 ps. 

 

Note that the Gaussian and the exponential functions are convoluted together (both are PDFs). 

 

Read in the histograms hr2, hr3, hr4 from the ntuple file, perform the fit (chi-square fit or maximum 

likelihood, your choice) to these histograms, and determine the lifetime τ, σt and t0, and their errors, 

respectively. 

 

Hints: The Roofit package offers a functionality that facilitates the convolution of two PDFs. See Chapter 5 

“Convolving a p.d.f. or function with another p.d.f.”  of the Roofit manual 
(Document version 2.91-33 – October 14, 2008, ) 
 

http://root.cern.ch/download/doc/RooFit_Users_Manual_2.91-33.pdf 
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