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Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package
Introduction to the program, installation, setup, running, macros and document

Tutorial

Weak 2 Fits and the regression

Basic assignment: Fit of functions to data: parameter determination and 

the goodness of the fit

Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 3 Monte Carlo random variates; Monte Carlo experiments

Basic assignment: Random number generation with root, statistical features, 

confidence intervals

Advanced assignment: A Monte Carlo based, statistical experiment to 

determine  the significance of an observation
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Project Schedule
Applied Computational & Numerical Methods

Week 4 Numerical methods

Partial differential equations

Week 5 Neural network method

Basic assignment: Backprop training on data, test of training results, 

optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Week 6 Project presentations
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To use the available information/data to the maximum extent in a fit, 

the maximum likelihood fit provides a very powerful approach to 

parameter determination, though it does not answer the question if the 

data-theory/model would match.  

 

The Method 
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where xi are data points, and p
�

 is the set of parameters to be 

determined in the fit. 

 

An equivalent expression, known as the log likelihood  
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ML maximize L or lnL to extract the parameters, and the errors on 

the are evaluated to be a 68% confidence contour space between 

the fitted p
�

 and p
�

±δp with lnL=lnLmax – ½. 
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Error Evaluation 

 

The log likelihood )ln lnPr ( |
i i

L p x= =∑
�

� can be expanded in a 

Taylor series in an approximation 
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Considering the case where the likelihood is well behaved. Around 

the true value for a parameter pi the distribution is Gaussian like 
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The second derivative of the likelihood at p0i is  
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The errors on a parameter pi correspond to the variations in its 

value when the log likelihood is reduced or increased by ½: 
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This is the standard technique to extract errors in a maximum likelihood fit. Note that the errors on the + and – sides are not always the same. 

 

The error matrix of the fit for the parameters p
�

 is M, its elements 

are also determined from the log likelihood �: 
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This is the standard technique to extract errors in a Chi-square fit.  

 
The error matrix of the fit for the parameters p

�
 is M, its elements 

are also determined from the χ2
 variable: 
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A closer look at matrix elements of the IEM: 
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Using the Gaussian approximation, at or near the true value for pi, it’s 

contribution to χ2 is 
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Examples 

 

The likelihood: 
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To maximize the likelihood 
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Solve this linear equations, we obtain: 
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And the error matrix is 
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A closer look at matrix elements of the IEM: 
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Using the Gaussian approximation, at or near the true value for pi, it’s 

contribution to χ2 is 
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 More on errors associated with the ChiSquare Fit 
To extract the errors and co-variances we define an inverse error matrix
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The error matrix for the set of parameters pi is obtained by inverting the 

H matrix 
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 Error Contour 

With multiple parameters fit, the parameters are normally correlated. 

Instead of clear linear intervals for the ranges for the parameters, a 

closed contour defines the 1 standard error boundary as a function of all 

parameters involved. This is achieved by requiring 
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Example 
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The error contour is then 
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Keep one fixed at the fitted value and allow the other to float. The 

amount of change in the other variable is exactly the standard error on 

the variable. 
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Kinematic fit with constraints: 

 

In many cases measured quantities can be improved by making use of 

known physics laws and other conditions. 

 

Consider an elastic collision in space between equal mass objects 

 
 + p  p + p p→  

 

 

 

 

 

Kinematic constraints:   C=θ1 + θ2 − π/2 =0 

1

mθ ε±
Before collision 

2

mθ ε±  
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Define the chisquare variable 
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where ε is the error on the measured angles θm
1 and θm

2. By requiring 
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the solution for θ1 and θ2 are found to be 

1 1 1 2 2 2 1 2

1 1
( ), ( )

2 2 2 2
m m m m m mπ πθ θ θ θ θ θ θ θ= + − − = + − −  

 

The errors on the improved angle measurements are 
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The minimized chisquare value is 
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Notes:     

I.   Error reduced by 28% after the kinematic fit. 

I. Simple, straight fit – linear in θ1 and θ2. 

II. Though θm
1 and θm

2 are independent, θ1 and θ2 are now fully anti

correlated. 

Error matrix 
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The new error matrix for θ1 and θ2 is 
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What is the use of the Monte Carlo Simulation ?



Monte Carlo Simulation

June 27, 2011 Xinchou Lou 22



Monte Carlo Simulation

June 27, 2011 Xinchou Lou 23



Monte Carlo Simulation

June 27, 2011 Xinchou Lou 24

Geometry, material, constants

Events, interactions, output

Analysis of output

Make changes and repeat
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Introduction – simple examples

N. Whiteley
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N. Whiteley

Introduction – simple examples
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N. Whiteley

Introduction – simple examples
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Monte Carlo Simulation
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xi+1 = (axi + c) (mod m),    i=1,...,n

a multiplier

c increment

m modulus

which means that xi+1 = (axi + c) – mki

where ki=[(axi + c)/m] 

denotes the largest positive integer in (axi + c)/m

• (0-1) random number can be obtained from ui=xi/m

•Clearly that the recursive formula yields a deterministic sequence,

the numbers will be periodic 

especially xi < m -- the sequence contains at most m distinctive numbers 

(get into a loop)

Pseudorandom number generator
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N. Whiteley

Basic Concepts – pseudo random numbers
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N. Whiteley

Basic Concepts – pseudo random numbers
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N. Whiteley

Basic Concepts – pseudo random numbers
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N. Whiteley

Basic Concepts – pseudo random numbers
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Basic Concepts – pseudo random numbers

Example Generators 
 

Literature                 x0>0, a=27+1, c=1, m=235 

 

IBM System/360      x0>0, a = 75, c=0, m=231 – 1 

 

 

CERN library:  m=2
31

-1, a=2
r
+1, c=0 

 

ROOT Library 

 
Float_t TRandom::Rndm(Int_t) 

{ 

//  Machine independent random number generator. 

//  Produces uniformly-distributed floating points between 0 and 1.

//  Identical sequence on all machines of >= 32 bits. 

//  Periodicity = 10**8 

//  Universal version (Fred james 1985). 

 

   const Float_t kCONS = 4.6566128730774E-10; 

   const Int_t kMASK31 = 2147483647; 

 

   fSeed *= 69069; 

      // keep only lower 31 bits 

   fSeed &= kMASK31; 

      // Set lower 8 bits to zero to assure exact float 

   Int_t jy = (fSeed/256)*256; 

   Float_t random = kCONS*jy; 

   return random; 

} 
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Monte Carlo Simulation

Generation of random variates with PDF=f(x), and CDF= ( ) ( )

cutoffx

cutoffF x x f x dx
−∞

< = ∫
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Monte Carlo Simulation
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Introduction – simple examples

Consider the simple integral: 

This can be evaluated in the 

same way as the pi example. 

By randomly tossing darts at a 

graph of the function and 

tallying the ratio of hits inside 

and outside the function. 

G. Chen
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Introduction – simple examples

A Simple Integral (continued…)
• R = {(x,y): a ≤≤≤≤ x ≤≤≤≤ b, 0 ≤≤≤≤ y ≤≤≤≤ max f(x)}

• Randomly tossing 100 
or so darts we could 
approximate the 
integral…

• I = [fraction under f(x)] * (area of R)

• This assumes that the dart 
player is throwing the darts 
randomly, but not so 
random as to miss the 
square altogether.

G. Chen
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Monte Carlo Random Variates & A Monte Carlo Experiment

Basic Assignment
Random number generation with root, statistical features, and 

confidence intervals

Advanced Assignment
A Monte Carlo based, statistical experiment to determine the 

significance of an observation
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Basic Assignment 
Random number generation with root, statistical features, and confidence intervals 

 

Introduction 

In many scientific studies a theory can define a probability density function (PDF) of well 

known phenomena, PDFwkp. Experimentalists can search for events that are statistically 

well beyond the rate predicted by PDFwkp. Observation of such result may lead to 

important discovery and better understanding of the nature or the technical aspect of a 

physical system. 

 

In physics research, commonly used PDFs include the Possion distribution 
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where <n> is the mean, n the total number of successes or signal events observed during 

the period of the experiment, and the Gaussian PDF distribution 
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where x  is the mean of the variable x, and σ is the standard deviation. For a study 

involving a total of N trials, the event density function (EDF) is given by  

 

)()( xfNxn ×=  
 

for a Gaussian distribution. The total number of events expected in an interval (xl, xh) is 

determined from  

 

N ( ),  or ( )   
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The Project 

 

(1) Generate 10,000 Poisson events for <n>=100, determine the mean (<ndata>), and 

variance (σ2
) and,  the standard error (σ) from this data sample. What is the error 

on <ndata>? What is the error on σ? 

 

(2) From the data sample generated  in (1), determine the confidence level for  

 

,  2 ,  and 120n n n n nσ σ≥< > + ≥< > + ≥  

 

 

(3) Generate 2 million Gaussian events with mean x =0 and σ=1.0, and determine 

from the data sample generated the confidence level for 

 

  (k=0, 1, 2, 3, 4, 5, 6).x k σ≥ ×  

 

A sample macro project3.C is available to illustrate the way to call ROOT random 

number generators. 
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{

cout<<"random events are generated"<<endl;

gROOT->Reset();

Double_t Mean = 8.0, Sigma = 2.5;

Double_t ng =0.0, np=0.0;

Int_t Nrun=10000, N=0, N18=0;

hr1  = new TH1F("hr1","Gsuaaian random data",400,-10,30);

hr2  = new TH1F("hr2","Poisson random data",400,-10,30);

hr3  = new TH1F("hr3","Poisson random data",400,-10,30);

hr1->GetXaxis()->SetTitle("n value");

hr2->GetXaxis()->SetTitle("n value");

hr3->GetXaxis()->SetTitle("n value");

for (Int_t i=0;i<Nrun;i++) {

ng = gRandom->Gaus(Mean, Sigma);
hr1->Fill(ng);

np = gRandom->Poisson(ng);
hr2->Fill(np);

if(np>17.99){hr3->Fill(np);}

}

}
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………

const Int_t kUPDATE = 500;

Float_t xrn, xbi, xps, xs1, xs2, xmain;

for ( Int_t i=0; i<10000; i++) {

xrn =    gRandom->Rndm(i);                   // uniform Random Generator 

xbi =   gRandom->Binomial(20,0.5);     //binomial distribution with N=20, p=0.5

xps =   gRandom->Poisson(10);             //Poisson distribution with <n>=10

xmain =  gRandom->Gaus(-1,1.5);           // Gaussian with mean =-1.0, sigma=1.5

xs2   =  gRandom->Landau(1,0.15);        // Landau distribution with center=1.0 

and Gamma=0.15

}

…………………..
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Advanced Assignment 

A Monte Carlo based, statistical experiment to determine the significance of an 

observation 
 

Introduction 

 

Discovery of the Top Quark Decay–– The CDF experiment published its result on a search 

for the missing 6
th

 quark in elementary physics. The experiment observed 15 candidates, and 

expected 
0.45

0.445.96+

−  background/noise events. 

 

 

 

Detection 

Method 

Nbkg 

Expected 

Background  

NSCand 

Observed Signal 

Candidates 

Probability 

of Bkg 

Fluctuation 

di-lepton 0.25

0.130.56+
−  2 0.12 

Silicon vertex 

detector 

 

3.1 0.3±  

 

7 

 

0.038 

Soft lepton 2.3 0.3±  6 0.038 

 

SUM 

 
0.45

0.445.96+
−  

 

15 

 

0.0026 

 

 

The CDF collaboration has determined that the probability that the observed yield is 

consistent with the background is estimated to be 0.26% 
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The project 

Perform a Monte Carlo experiment to demonstrate that indeed the probability that the 

observed yield is consistent with the background is estimated to be 0.26%, using random 

number generators (Poisson, Gaussian and Uniform random number generators). 

 

Hints:  

(1) Go over the CDF paper (posted at the class site), and 
(2) Calculate the ratio   

( 15)

( any value)

SCand

SCand

N N

N N

>

=
 

 



Summary of Lecture IV

Organization

• Project assignment

• Lecture Notes

What have been covered

• Max. Likelihood Fits, 

Errors

• Variable transformation

• Monte Carlo Simulation 

• Examples

• Project III
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