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Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package
Introduction to the program, installation, setup, running, macros and document
Tutorial

Weak 2 Fits and the regression
Basic assignment: Fit of functions to data: parameter determination and
the goodness of the fit
Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 3 Monte Carlo random variates; Monte Carlo experiments
Basic assighment: Random number generation with root, statistical features,
confidence intervals
Advanced assignment: A Monte Carlo based, statistical experiment to
determine the significance of an observation
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Project Schedule
Applied Computational & Numerical Methods

Week 4 Numerical methods
Partial differential equations

Week 5 Neural network method
Basic assignment: Backprop training on data, test of training results,
optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Week 6 Project presentations
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Fit & Regression

To use the available information/data to the maximum extent in a fi
the maximum likelihood fit provides a very powerful approach to
parameter determination, though it does not answer the question if t
data-theory/model would match.

The Method

L(plx;,%yss ) =] [InPr(plx,)

where x; are data points, and p is the set of parameters to be
determined in the fit.

An equivalent expression, known as the log likelihood

InL=>%InPr,(plx)

ML maximize L or InL to extract the parameters, and the errors on
the are evaluated to be a 68% confidence contour space between
the fitted p and p 0, with InL=InL,,,, — V2.
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Fig. 4.4. A visual representation to show how the maximum likelihood
method succeeds in finding the best value of the parameters. The bars
along the m-axis represent experimental measurements of a set of mass
values m,, which are fitted by a Breit-Wigner resonance shape. In (a)
the width of the resonance is kept fixed and the central mass M, is
varied. This has the effect of sliding the y(M,, I') curve along the
m-axis, while keeping its height and shape unaltered. For a given
position of the curve, We multiply together all the y, values (.. y
evaluated at each of the m,) to obtain the likelihood function . The
value of M, which maximises & is then the best estimate of the mass
of the state. This clearly occurs when the curve is centred on the
concentration of experimental mass values. In (b), the mass of the
state is kept constant but its width is varied. Since the curves are
normalised to constant area, the curve for smaller I is higher at the
central value than is that for larger I'. The best value of I is that for
which the product of the y-values is largest. In this case it is the sprea:
in the experimental mass values which is effective in determining T
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Fit & Regression

Error Evaluation

The log likelihood /=InL=}InPr,(plx;)can be expanded in a
Taylor series in an approximation

1 .
(=1 s +§£ O3 +....

_ 1o _1
_Emax+2cdp+.... (C‘g")

Considering the case where the likelihood is well behaved. Around
the true value for a parameter p; the distribution is Gaussian like

_(pi=py)?
(~Infe 20°

The second derivative of the likelihood at py, is
A —1 2
52 (or c~07)

The errors on a parameter p; correspond to the variations in its
value when the log likelihood is reduced or increased by Y2:

_ 1 +0,,
g_gmax_j = 0, ~ —0';,7_

Xinchou Lou



Maximum likelihood method ‘i = '“‘ y‘. (W, ™
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Fig. 4.5. In many situations, ¢ (the logarithm of the likelihood
function) tends to be parabolic as a function of the parameter p in th
region of the maximum. In that case, the likelihood function % is
Gaussian distributed. The best estimate of the parameter p, is that
which maximises either & or ¢. The accuracy dp with which p, is
determined is defined by the condition ¢(p, +dp) = ¢(p,)—1. This is
here cquivalent to the statement that dp? is the variance of the %
distribution.
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Fit & Regression

d technique to extract errors in a maximum likelihood fit. Note that the errors on the + and — sides are not always the same.

The error matrix of the fit for the parameters p is M, its elements
are also determined from the log likelihood /:

0%y

(Mij)_ — —W

June 27, 2011 Xinchou Lou
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Figure 3: The accepted cross-sections in each W+ W~ decay channel as a function of Mw — Epcam are
illustrated in (a), using the event generators described in the text. In each case, this is parametrised
by a second order polynomial. The likelihood function and the corresponding statistical uncertainty
are shown in (b) for /3 = 161.3 GeV. Plot (c) shows the distribution of My values evaluated using
repeated Monte Carlo trials. Its width gives the systematic uncertainty.
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Fit & Regression

he standard technique to extract errors in a Chi-square fit.

The error matrix of the fit for the parameters p is M, its elements
are also determined from the x2 variable:

-1

20,2 2042
(Mij)—lz 192 or (Mij) _|10%2(xY)

20p,9p 20p,0p;

A closer look at matrix elements of the IEM:

n (prp _X.theory ()C, —>))2
Zz(ﬁ)=; i = p

1

= —2In(L)+ constant

2 2
P . P
o2 - o2

141 Py

(a random variables depending on p;)

pz
+....+—;+c0nstant
pn

Using the Gaussian approximation, at or near the true value for p;, 1
contribution to %2 is

(P;=p;0)?
o
P
Therefore -0 ¢ 2)—2(pi_pi0) and 22 (%) =2

Xinchou Lou
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Fit & Regression

Examples

The likelihood:
l=—%(13x2 +6Bxy+7y?)

To maximize the likelihood

a1
—=—(26x+6~3y)=0
ox 4( X fy)

a 1
—=—(63x+14y)=0
% 4( J3x+ y)

Solve this linear equations, we obtain:

0
0

X

y

And the error matrix is
AN
M. =— 02l _ ox>  oxdy 27 -33
U ldpdp; | | o | 643313
dyox oy’

Xinchou Lou
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Fits & Regression

A closer look at matrix elements of the IEM:

n Xp __ y,theory —\\2
O =y (%, P))
X ; =

l

=—2In(L)+constant

(a random variables depending on p;,)

2 2 2
— _Pa +_p22 +....+—p5l +constant

O-pl O-pz O-p n

Using the Gaussian approximation, at or near the true value for p;, 1

contribution to %2 is

_(pi_pi())z
O-pzi
Therefore -9 (Zz):_z(p i_pio), and 92 (%) =—2

Xinchou Lou
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Fits & Regression

[0 More on errors associated with the ChiSquare Fit
To extract the errors and co-variances we define an inverse error mx

0* 0~
) a7
H=
0° 0*
.9 P1(Z2) ap’%(;(z)

The error matrix for the set of parameters p; 1s obtained by inverting
H matrix

M=H" (H, =(1M}
2 dp,dp,

June 27, 2011 Xinchou Lou
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Fits & Regression

[0 Error Contour

With multiple parameters fit, the parameters are normally correlatec
Instead of clear linear intervals for the ranges for the parameters, a
closed contour defines the 1 standard error boundary as a function ¢
parameters involved. This is achieved by requiring

2
X +1
Example
Assume
2 2
2 _ .2 LO0x* Oy
Ay =Xmint 3T
min Gx Gy
The error contour is then
2 2
5x2 L9 )/2 :1
oy Oy

Keep one fixed at the fitted value and allow the other to float. The
amount of change in the other variable is exactly the standard error
the variable.

Xinchou Lou
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l-?ig. 4.14. Do-it-;ounell‘ minimisation, for a problem involving a
single parameter p. The sum of squares S is calculated at a series of
n.lnen of (_he parameter p; these are represented by the crosses. The
minimum is then obtained cither by inspection, or by a simple
computer subroutine which calculates the parabola (solid curve)
through the three points nearest the minimum. The minimum of the

parabola gives the best estimate p, of the parameter, and the width of
the parabola determines the error p (assumed to be symmetric).
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Fig. 4.6. A log-likelihood function ¢ of two variables. Here ¢
maximises at the origin. The ellipse shown corresponds to the contou
for £ .- — 3, which is used to obtain the errors on the variables x anc
». Since the axes of the ellipse are parallel to the x and y axes, the
errors are uncorrelated. The simplest way to produce the effect of
correlations is to rotate the axes. Then ¢ still maximises at the origin,
but we see that the ellipse is now inclined. As y* increases from its
optimum value (zero), the value of x’ required to maximise ¢
decreases; this is a negative correlation. The magnitudes of the errors
(including their possible correlation) are expressed in terms of the

June 27, 2011 error matrix, which is derived from the likelihood function by
’ equations (4.33") and (4.33).
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Fits & Regression

Kinematic fit with constraints:

In many cases measured quantities can be improved by making use
known physics laws and other conditions.

Consider an elastic collision in space between equal mass objects

ptp = p+p

Before collision
g+
\ Hzm

>matic constraints: C=0; + 06, — n/2 =0

Xinchou Lou 17
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Fits & Regression

ne the chisquare variable

m
=6, (67 -6,)° (Or-g)> (&' +6)

5=!
e? e? e? e?

re € is the error on the measured angles 0™, and 6™,. By requiring

m T
ﬁz _2(9{11_91) N 2(92 —5+91) 0
8491 82 82

solution for 8, and 6, are found to be

B=6" 45766, 6,6 +5(7 6"~ 8))

errors on the improved angle measurements are

00V 5, (36 5 (17 5 (17, &
2 2 2 _ 2 2
%—[WJ ¢ *[:751} ¢ _[ZJ ¢ +[§J £=7

Xinchou Lou
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Fits & Regression

minimized chisquare value is

S a8
min 282

28!

I. Error reduced by 28% after the kinematic fit.

L. Simple, straight fit — linear in 0, and 6.

II. Though 6™ and 6™, are independent, 6, and 0, are now full
correlated.

I matrix

2
e 0
M,, ={ } for 6" and 6,"

0 &2

new error matrix for 8, and 6, is

Lo, (L
r 2 2 € 2 2
M. =TM,6T=
| 1{0 52}_1 1
2 2 2 2
_e(1 -l
20-1 1
Xinchou Lou
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Monte Carlo Simulation

What is Monte Carlo?

June 27, 2011
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Nick Whiteley 2010
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Monte Carlo Simulation

What is the use of the Monte Carlo Simulation ?

I heard or read over the years:

'""is an brut force approach to problems which have random variables
and the solution can not be expressed analytically. "

" is widely used for parameter analyses."

For example: to know the influence of a parameter, say vapor

permeability of a wall layer, one obtain a number of results, say the total
moisture accumulation. Each result 1s obtained by a randomly selected

permeability. The selection 1s according to a propabality density
distribution (such as normal or uniform). The distribution of the resuls 1s

the influence by the parameter variation.

June 27, 2011 Xinchou Lou 21



Monte Carlo Simulation

" is the last resort to understand a complex system quantitatively."
For example: multi-body quantum system i which large number of states
are not fully populated; rather their occupancies are described by the
probability density functions (PDF). A real time description of such
systems can only be achieved using the Monte Carlo simulation method.

" can be described as a statistical simulation method that utilizes
sequences of random numbers to simulate the processes often too
complicated to described analytically."

Monte Carlo method as a scientific technique gained its status of capable
of addressing the most complex applications. The term *"Monte Carlo"
was coined during the Manhattan Project of World War II, because it
involves randomness or the game of chance, and because the city of
Monte Carlo, the capital of Monaco, was a center for gambling and
similar pursuits. Monte Carlo 1s now used routinely in many diverse
fields.

June 27, 2011 Xinchou Lou 22



Monte Carlo Simulation

"1s, in many occasions, the cheapest or only way to do the experiment."
Many experiments or systems are too expensive to build or to optimize. Monte
Carlo simulation method makes it possible to carry out these experiments or

setting up the systems on a computer and can run them many times without
occurring high cost.

rundom numbers on [0,1]

The Sun

probability
[(x) dcnosity
> [unctions {(pd['s)

results of | x which decseribe
simulation the sun

radiance, solar wind [lucnoec,

cvolution of sun, ........

Physical System

Statistical Simulation

June 27, 2011 Xinchou Lou 23



Monte Carlo Simulation

Prototyping,
Instrument,
Detector

People, Space,
Funding, Plan,

L Experimental Result!
Operation

A

A 4

Monte Carlo
Simulation Using
A Compbuter

June 27, 2011

Geometry, material, constants
Events, interactions, output
Analysis of output

Make changes and repeat

Xinchou Lou 24
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Monte Carlo Simulation
Nuclear Interactions

Quantum Physical Systems

Detection System

Cosmology and Astrophysics, Space Research
Large Degrees-of-Freedom Physical Systems
Tratfic Flow and Control

Biological Systems

Economics, Financial Markets, Effects of Economic

Policies

Seismology and O1l Exploration
System Designs

....... Many More

AINCNou Lou

25



Monte Carlo Simulation

« The growth of computing power over
the last 50 years has enabled us to
address and “solve” many important
technical problems for society

« Codes contain Realistic models,
good spatial and temporal resolution,
realistic geometries, realistic
physical data, etc.

Stanford ASCI Alliance—Jet Engine Simulation

o raaa Y

U. Of Illinois ASCI Alliance—Shuttle Rocket Booster Simulation

L. Winter et al-Rio Grande Watershed
G. Gisler et al-Impact of Dinosaur Killer Asteroid 2

June 27, 2011 Xinchou Lou 26



Monte Carlo Simulation
Collision Event at 7 TeV W|th 2 Plle Up Vert|ces

EXPERIMENT

Run Number: 152166, Event Number: 467774
Date: 2010-03-30 13:31:46 CEST

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html




Monte Carlo Simulation

Simplistic View of a Monte Carlo Simulation System

(1) Random number generation

(2) Probability Density Functions (PDF)

(3) Mapping random numbers into the (PDF) space

(4) Sampling of generated events

(5) Comparison to prototype system or data or theoretical expectations
(6) Calibration, correction or best estimate

(7) Statistical analysis of the simulation: intermediate or final results
(8)  Error analysis

(9) Optimization with error reduction, parameter variation, etc.

June 27, 2011 Xinchou Lou 28



Monte Carlo Simulation

One of many definitions

A Monte Carlo method consists of

@ ‘representing the solution of a problem as a parameter of a
hypothetical population, and

@ using a random sequence of numbers to construct a sample of
the population, from which statistical estimates of the
parameter can be obtained.”

(Halton, 1970)

Sometimes referred to as stochastic simulation.

Nick Whiteley 2010
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Introduction — simple examples

Examples of applications of Monte Carlo methods (1)

Numerical Integration

Objective is to estimate an integral

fx f=) dx,

which is analytically intractable.
A

N. Whiteley
PHYS3330 Prof. Xinchou Lou 30



Introduction — simple examples

Examples of applications of Monte Carlo methods (2a)

Bayesian statistics

o Data yi1,...,y, and model f(y;|@) where 8 is some
parameter of interest.

~ Likelihood I(y1,....y.|0) = | [ f(¥il6)
71l

@ Frequentist estimate of @ is the maximiser of I(y1,...,yn)
(“maximum likelihood estimate™).

@ In the frequentist framework @ is a parameter, not a random
variable.

N. Whiteley
PHYS3330 Prof. Xinchou Lou 31



Introduction — simple examples

Examples of applications of Monte Carlo methods (2b)

Bayesian statistics (continued)

@ In the Bayesian framework 0 is a random variable with prior
distribution fPr°*(@). After observing y1,. ...y, the posterior
density of f is

fpost(g)

Oy )

fPOr(0)I(y1, - .., ynl0)
J e () (e By 1) el
x  fPH(@)I(y1,...,¥n|0)

@ For many complex models the integral in the denominator is
hard to compute
~~ use of a Monte Carlo approximation

N. Whiteley
PHYS3330 Prof. Xinchou Lou
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‘U‘on!e Ear‘o !lmu‘aflon

Example 1.1: Raindrop experiment for computing 7 (1)

o Consider “uniform rain” 1
on the square
[—1,1] x [-1,1], i.e. the
two coordinates
X,Y "% U[-1,1].
@ Probability that a rain
drop falls into the dark
circle is 1

area of the unit circle

P(drop within circle) S T A —

[ 1dzdy

{x24+y2<1} /iy

Nick Whiteley 2010 ff 1 dﬂ:dy N 2-2

-
=71

June 27, 2011 Xinchou Lou 33



Monte Carlo Simulation
Example 1.1: Raindrop experiment for computing 7 (2)

T
e If we know 7, we can compute P(drop within circle) = 1

@ Consider n independent raindrops, then the number of rain
drops Z, falling in the dark circle is a binomial random
variable:

Zn ~ B(n,0), with 6 := P(drop within circle).

@ We can estimate 6 by

On,
@ Thus we can estimate 7 by

Nick Whiteley 2010 B =4y = 4+ —,

June 27, 2011 Xinchou Lou 34



‘U‘OHEG Ear‘o !lmu‘aflon

@ Result obtained for
n = 100 raindrops:
77 points inside the dark
circle.

@ Resulting estimate of 7 is

) 4.7, 4 .77
*=— = o0 — 2%

(rather poor estimate)

o However: the law or large
numbers guarantees that
TTp = 4'5" — 7 almost

surely for n — o0.

Nick Whiteley 2010

June 27, 2011 Xinchou Lou 35
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Monte Carlo Simu|ation

Algorithm 1.1: Congruential pseudo-random number generator

1. Choose a,M € N ¢ € Ny, and the initial value (“seed”)
Zoe{l,...M —1}.

2. Fori=1,2,...

Set Z; = (aZ;—1+c¢) mod M, and X; = Z; /M.

Z; € {0,1,...,M—1}, thus X; € [0,1)

Nick Whiteley 2010

June 27, 2011 Xinchou Lou 37



Monte Carlo Simulation

Pseudorandom number generator

X;,; = (ax;+c) (mod m), i=1,...,n
a multiplier
c increment
m modulus
which means that  x,,; = (ax, + ¢) — mk;
where k=[(ax;+ c)/m]
denotes the largest positive integer in (axi + c)/m

e (0-1) random number can be obtained from ui=xi/m

eClearly that the recursive formula yields a deterministic sequence,
the numbers will be periodic

especially xi < m -- the sequence contains at most m distinctive numbers
(get into a loop)

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Cosider the choice of a = 81, ¢ = 35, M = 256, and seed Z; = 4.

Zy = (81-4+435) mod 256 = 359 mod 256 = 103
Zy = (81-103+4 35) mod 256 = 8378 mod 256 = 186
Zz = (81-186+ 35) mod 256 = 15101 mod 256 = 253

The corresponding X; are X7 = 103/256 = 0.4023438,
Xo = 186/256 = 0.72656250, X = 253/256 = (0.98828120.

Nick Whiteley 2010

June 27, 2011 Xinchou Lou

39



Basic Concepts — pseudo random numbers

@ Philosophical paradox:

o We need to reproduce randomness by a computer algorithm.
o A computer algorithm is deterministic in nature.

~ ‘“pseudo-random numbers"”

@ Pseudo-random number from U|0, 1] will be our only “source
of randomness” .

@ Other distributions can be derived from U|0, 1]
pseudo-random numbers using deterministic algorithms.

N. Whiteley
PHYS3330 Prof. Xinchou Lou 40



Basic Concepts — pseudo random numbers

@ Very popular in the 1970s
(e.g. System/360,
PDP-11).

@ Linear congruential
generator with
a=29%4+3 ¢=0 and
M = 2*,

@ [he numbers generated
by RANDU lie on only 15

hyperplanes in the
3-dimensional unit cube!

According to a salesperson at the time: "We guarantee that each number is
random individually, but we don't guarantee that more than one of them is

random.”

N. Whiteley
PHYS3330 Prof. Xinchou Lou 41



Basic Concepts — pseudo random numbers

The flaw on the linear congruential generator

@ "“Crystalline” nature is a problem for every linear congurentrial
generator.

@ Sequence of generated values X1, Xo, ... viewed as points in
an n-dimension cube lies on a finite, and often very small
number of parallel hyperplanes.

o Marsaglia (1968): “the points [generated by a congruential
generator| are about as randomly spaced in the unit n-cube as
the atoms in a perfect crystal at absolute zero.”

@ The number of hyperplanes depends on the choice of a, ¢,
and M.

@ For these reasons do not use the linear congurential generator!

Use more powerful generators (like e.g. the Mersenne twister,
available in GNU R).

N. Whiteley
PHYS3330 Prof. Xinchou Lou 42



Basic Concepts — pseudo random numbers

Another cautionary example

Linear congruential generator with a = 1229, ¢ = 1, and M = 211,

Xoy,

Pairs of generated values (Xon—1, Xor)

1.0

04

0.2

0.0

038

06

00000

C

=<0

k=

°°oo S_\L

aonoene? E

0000 7]

’T-I-‘o

2

)

0000 =74

2

NI

|
00 02 04 06 08 1 -10 5 0 5
KXor—1 —2log(Xox—1) cos(2m Xo)

Transformed by Box-Muller method

N. Whiteley

PHYS3330 Prof. Xinchou Lou 43



Basic Concepts — pseudo random numbers

Example Generators

Literature x0>0, a=27+1, c=1, m=235

IBM System/360  x0>0, a =73, ¢c=0, m=231 — 1

CERN library: m=2"'-1, a=2"+1, c¢=0

ROQOT Library

Float_t TRandom: :Rndm(Int_t)

{

//
//
//
//
//

Machine independent random number generator.

Produces uniformly—-distributed floating points between O
Identical sequence on all machines of >= 32 bits.
Periodicity = 10**8

Universal version (Fred james 1985).

const Float_t kCONS = 4.6566128730774E-10;
const Int_t kMASK31l = 2147483647;

fSeed *= 69069;
// keep only lower 31 bits
fSeed &= kMASK31;
// Set lower 8 bits to zero to assure exact float
Int_t jy = (fSeed/256)*256;
Float_t random = kCONS*jy;

return random; 44



Monte Carlo Simulation

Generation of random variates with PDF=f(x), and CDF= F(x<x,,,)= j f(x)dx

Inversion Method // Properties

Required: (Inverse of) CDF F of Distribution.

-

%
u-~u(,1 — X=FHu

]

Exponential distribution: F~'(u) = —log(1 — u)

Leydold, Hormann & Moneta -
June 27, 2011 Xinchou Lou 45



Monte Carlo Simulation

Inversion Method // Properties

® The most general method for generating non-uniform
random variates.

Works for all distributions provided that the inverse CDF
IS given.

® Get one random variate X for each uniform U.

® Preserves the structural properties of the underlying
uniform PRNG.

However:

# CDF and its inverse often not given in closed form.

#® Need slow and/or approximate numerical methods.

Leydold, Hormann & Moneta -

June 27, 2011 Xinchou Lou 46



Introduction — simple examples

Consider the simple integral:

1= f(x)dx

This can be evaluated in the
same way as the pi example.
By randomly tossing darts at a
graph of the function and
tallying the ratio of hits inside
and outside the function.

G. Chen
PHYS3330 Prof. Xinchou Lou 47



Introduction — simple examples

A Simple Integral (continued...)

R={(x,y):a<x<b,0<y<maxf(x)}
 Randomly tossing 100

or so darts we could

approximate the

integral...
I = [fraction under f(x)] * (area of R)

This assumes that the dart
P e i player is throwing the darts
P R e randomly, but not so
random as to miss the
square altogether.

G. Chen
PHYS3330 Prof. Xinchou Lou 48



Project Ill — Introduction and discussion

Monte Carlo Random Variates & A Monte Carlo Experiment

Basic Assignment
Random number generation with root, statistical features, and

confidence intervals

Advanced Assignment
A Monte Carlo based, statistical experiment to determine the

significance of an observation

June 27, 2011 Xinchou Lou 49



Project Il — Introduction and discussion

Basic Assignment
Random number generation with root, statistical features,and confidence intervals

Introduction

In many scientific studies a theory can define a probability density function (PDF) of well
known phenomena, PDF,,,. Experimentalists can search for events that are statistically
well beyond the rate predicted by PDF,,. Observation of such result may lead to
important discovery and better understanding of the nature or the technical aspect of a
physical system.

In physics research, commonly used PDFs include the Possion distribution

<n>" __.
e D)

pn) = :
n.

where <n> is the mean, n the total number of successes or signal events observed during
the period of the experiment, and the Gaussian PDF distribution

)

. 1
s o) e

June 27, 2011 Xinchou Lou 50



Project Il — Introduction and discussion

where x is the mean of the variable x, and o is the standard deviation. For a study
involving a total of N trials, the event density function (EDF) is given by

n(x)=NX f(x)

for a Gaussian distribution. The total number of events expected in an interval (x; x;,) is
determined from

X

N x Z p(k), or | lhn(z)dz

X
k:xl
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The Project

(1) Generate 10,000 Poisson events for <n>=100, determine the mean (<ng,,>), and
variance (02) and, the standard error (o) from this data sample. What is the error
on <nga.>7 What is the error on 6?

(2) From the data sample generated in (1), determine the confidence level for

n2<n>+0, n=>2<n>+20, and n 2120

(3) Generate 2 million Gaussian events with mean x =0 and 6=1.0, and determine
from the data sample generated the confidence level for

xzkxo (k=0,1,2,3,4,5,6).

A sample macro project3.C is available to illustrate the way to call ROOT random
number generators.
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{

cout<<"random events are generated'<<end|;
gROOT->Reset();

Double_t Mean = 8.0, Sigma = 2.5;
Double_t ng =0.0, np=0.0;
Int_ t Nrun=10000, N=0, N18=0;

hrl = new TH1F("hrl","Gsuaaian random data",400,-10,30);
hr2 = new TH1F("hr2","Poisson random data",400,-10,30);
hr3 = new TH1F("hr3","Poisson random data",400,-10,30);
hr1->GetXaxis()->SetTitle("n value");
hr2->GetXaxis()->SetTitle("n value");
hr3->GetXaxis()->SetTitle("n value");

for (Int_t i=0;i<Nrun;i++) {

ng = gRandom->Gaus(Mean, Sigma);
hr1->Fill(ng);

np = gRandom->Poisson(ng);
hr2->Fill(np);

if(np>17.99){hr3->Fill(np);}

}
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const Int_t KUPDATE = 500;
Float_t xrn, xbi, xps, xs1, Xxs2, xmain;

for (Int_t i=0; i<10000; i++) {

xrn = gRandom->Rndm(i); // uniform Random Generator

xbi = gRandom->Binomial(20,0.5); //binomial distribution with N=20, p=0.5
xps = gRandom->Poisson(10); //Poisson distribution with <n>=10
xmain = gRandom->Gaus(-1,1.5); // Gaussian with mean =-1.0, sigma=1.5

xs2 = gRandom->Landau(1,0.15); // Landau distribution with center=1.0
and Gamma=0.15
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Advanced Assignment
A Monte Carlo based, statistical experiment to determine the significance of an

observation
Introduction

Discovery of the Top Quark Decay— The CDF experiment published its result on a search

for the missing 6™ quark in elementary physics. The experiment observed 15 candidates, an

expected 5.96°07 background/noise events.

kag NSCand Probability
Expected Observed Signal of Bkg
D : Background Candidates Fluctuation
etection
Method
di-lepton 0.56"0% 2 0.12
Silicon vertex
detector 3.1£0.3 7 0.038
Soft lepton 2.3+0.3 6 0.038
SUM 5.96"4 15 0.0026

The CDF collaboration has determined that the probability that the observed yield is
consistent with the background is estimated to be 0.26%
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The project

Perform a Monte Carlo experiment to demonstrate that indeed the probability that the
observed yield is consistent with the background is estimated to be 0.26%, using random
number generators (Poisson, Gaussian and Uniform random number generators).

Hints:
(1) Go over the CDF paper (posted at the class site), and
(2) Calculate the ratio

N(Ngcpa >15)
N(N,,, = any value)
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 Max. Likelihood Fits,
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